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6. AD IABAT I C APPROX IMAT ION AND RELATED I S SU ES

INC LUD ING TOPOLOG I CA L IMP L I C AT ION S

A. J. C. Varandas*

Departamento de Química, Universidade de Coimbra
3004-535 Coimbra, Portugal

We provide a perspective on several issues of the adiabatic approximation to
the fundamental equation of quantum chemistry as suggested by Born and
Oppenheimer: separation of the electronic and nuclear motions, coupled-
channel treatment, scaling properties, validity, and diabatic states. The need
for its generalization such as to account for the topological implications that
arise from the separation of the electronic (fast) and nuclear (slow) degrees
of freedom is also described in some detail by focusing on Jahn-Teller sys-
tems. Although considerable work has been reported on the energetics and
dynamics of two-fold degeneracies of the conical type, the list of references
on higher electronic degeneracies is meager due to enhanced theoretical
difficulty. For high degeneracies, it may therefore be convenient to avoid
the dynamics altogether by making use instead of symmetry invariants. This
short review will cover both types of approaches to the electron-nuclei coup-
ling problem, but focusing on work carried out at the author’s group.

6.1 Introduction

It is well established [1] that no problem in physics or chemistry can ever be

solved exactly. Approximations are unavoidable, with the adiabatic approxim-

ation due to Born and Oppenheimer [2] (BO), often called a theorem [3], be-

ing most fundamental as it is instrumental for ascribing a shape to a molecule.

Without it, the solution (albeit approximate) of the fundamental equation of

quantum mechanics - the Schrödinger equation (SE) - cannot be obtained except

for simple model systems. In fact, the SE can be solved exactly for the hydrogen

atom but no exact solution exists for any multi-electron system. Strictly speak-

*Email address: varandas@qtvs1.qui.uc.pt
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ing, the SE is itself an approximation as it does not account for relativistic effects,

and in nature there is no such a thing as a non-relativistic Schrödinger atom or

molecule. Similarly, Dirac’s equation is exactly solvable for the hydrogen atom

and accounts for relativity, but cannot account for the size and structure of the

atomic nuclei (thus, for the atomic interaction with the electromagnetic field). In

turn, quantum electrodynamics allows to achieve higher accuracy (by describ-

ing, say, the Lamb shift of levels), but this too only allows the calculation of

properties at some order of approximation to the relativistic effects. The above

cannot be viewed [4] as a pitiful temporary drawback but something that goes

on forever reflecting the approach of physics to nature: physics is nothing but

a hierarchy of approximations.

By allowing an accurate treatment of the electronic structure without con-

cerning the nuclei, the BO approximation underpins the way most chemists

think about molecules. In fact, such a dividing to conquer idea which may even

predate the publication of the BO key paper [5], leads to the concept of potential

energy surface (PES). Because this governs the nuclear motion, the BO approx-

imation lies at the heart of both molecular spectroscopy and chemical kinetics.

Manifestations of the breakdown of the BO approximation in systems that are

expected to behave adiabatically are ubiquitous in the sense of being rather

small, but they may be non-negligible if accuracy is on demand. In fact, since

electrons are expected to follow imperfectly the nuclei in their vibrational and

rotational motions, nonadiabatic effects are expected to be required whenever

there is a need to take into account that the vibrational and rotational motions

of the nuclei induce interactions with other electronic states. The BO approxim-

ation should therefore be most valuable if electronic properties are considered,

although it becomes somewhat more problematic when vibrational-rotational

properties are envisaged. For example, to obtain a dissociation energy of a di-

atomic in an adiabatic calculation one calculates first the potential energy curve

and then subtracts the zero-point energy for vibration. Instead, a nonadiabatic

calculation will give directly the observable dissociation energy of a molecule

rather than the well depth of the PES. Yet, it is well established that, even for the
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most unfavorable case of the hydrogen molecule (where the electron/nucleus

ratio is 1/1836), the calculated dissociation energy lies surprisingly close [6] to

the experimental value. Of course, the BO approximation can manifest itself

also on systems beyond electrons and nuclei, and we have recently suggested

that such an effect may explain the undissociated equator-to-pole motion of an

helium atom when moving around a much heavier fullerene molecule [7–9].

The adiabatic BO approximation lies therefore on the assumption that the

electronic states are well separated with the motion of the nuclei being governed

by just one electronic state. Yet, it is now well established that intersections

may occur between PESs of the same spatial and spin symmetry. In 2D Hilbert

space, the necessary and sufficient condition for such an intersection (known as

a conical or diabolical intersection) to occur can be satisfied if the molecule has

three atoms or more. Similarly, threefold degeneracies are possible for tetratomic

and larger molecules, fourfold for five atoms or more, fivefold for at least seven

atoms, and so on. Such topological features bear key implications on the validity

of the BO approximation, a subject that will be discussed in the present work.

A special class of systems where conical intersections occur due to symmetry

reasons is known under the names of Jahn and Teller [10–13] ( JT) who estab-

lished the following Theorem: all molecules (other than linear ones) distort from

a symmetric configuration Q0 if, by so doing, any electronic degeneracy can be

lifted. In the vicinity of Q0, the PES assumes the form E± =E0±cρ, where ρ is the

radial polar coordinate in the subspace (v-space) that contains all JT distorted

configurations1. If the PES does not satisfy such a requirement (by having an

extremum at Q0, say), it is called non-JT: it may even touch tangentially the next

non-JT excited state leading then to a pseudo-JT type instability [11, 13]. Gen-

erically, N -fold electronic degeneracies have associated the unitary and rotation

groups in N dimensions [11].

The study of conical intersections in 2D Hilbert space [15–19] has been pi-

1The only exception to such instabilities on linear systems are twofold spin degeneracies of
Kramer’s type [14]. These are of no concern as only orbital degeneracy is here envisaged. If
quadratic coupling is included, the linear molecules will also not be an exception due to the so-
called Renner-Teller (RT) effect, also out of the scope of the present work.
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oneered by Herzberg and Longuet-Higgins [20]. In 1975, Longuet-Higgins [21]

(LH) established the following two key theorems: I. On going once around

any closed path on the surface that contains the conical intersection the elec-

tronic wave function changes sign; II. If a real adiabatic electronic wavefunc-

tion changes sign when a polyatomic traverses a 1D closed loop on a 2D surface

in the (3N−6)-D nuclear configuration space, then the corresponding electronic

state must become discontinuous and degenerate with another one at an odd

number of points lying on that surface and within that loop. There is therefore

a phase factor (geometrical phase or GP) experienced by an eigenfunction of

the parameter-dependent Hamiltonian when transported adiabatically such as to

complete a path closing to itself around the conical intersection. In fact, such an

intersection can be demonstrated by verifying [22,23] the LH theorem I, by eval-

uating the line integral of the derivative couplings along a closed loop [17, 24],

or by using [23] the Pancharatnam [25] connection. Varandas, Tennyson and

Murrell [22] have in turn demonstrated that a conical intersection needs not be

forced by symmetry reasons.

Although the GP effect has been known for decades [20, 21], interest on it

has largely been motivated by Mead and Truhlar [26] derivation of a general

phase factor formula in the context of the molecular BO problem followed by

its rederivation and recasting in a more general context by Berry [24]. It became

then also known as the Berry phase. Because the involved differential equations

are similar to those of a charged particle moving in the presence of a magnetic

solenoid, it is further often called as the molecular Aharonov-Bohm effect. Note

that the GP appears whenever the BO approximation is utilized to separate

the fast motion of the electrons from the slow vibrational degrees of freedom

(parameters) in studying the coupled vibrational-electronic (vibronic) system.

[Parenthetically, it should be noted that mathematical tools such as fibre bundles

and gauge theories have specialized to describe (an)holonomies like GP; an

account of this can be found in Ref. 27] Since the total BO wave function is a

product of the electronic and nuclear ones, with the former changing sign when

transported adiabatically along a loop that encircles a conical intersection [20,
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21,24], a sign change of opposite effect must occur in the nuclear wave function

such that their product becomes single-valued. This has important consequences

on the quantized nuclear motion, particularly in determining the symmetry of

the ground-state vibronic energy levels [13,28]. Indeed, its signature on reaction

dynamics has been a theme of much debate over the years [29–33].

Compared with the vast amount of research on twofold degeneracies [17,24,

26, 34–42] (the list is by no means exhaustive), the number of studies on the

GP effect at higher electronic degeneracies is meager [19, 28, 43–45]. Cullerne

and O’Brien [46] have been the first to use both numerical and analytical meth-

ods to map the lowest adiabatic PESs of icosahedral molecular systems such as

fullerenes with a view to understand the rich structure of their degenerate elec-

tronic and vibrational modes as well as the role of GP. They have remarked [46]

“To discuss the complete structure of degeneracies and Berry phases over the

full nine-dimensional (9D) space of G ⊗ (g ⊕ h)2 would be a mammoth task.

Indeed, it is a task that we did not even complete in the 4D and 5D phase

spaces of the subsystems G⊗ g and G⊗h.” In 1998, Manini and De los Rios [28]

and, more recently, Lijnen and Ceulemans [47] investigated the GP effect on the

manifold of JT potential minima (JTM) of such species. Other developments

are due to Manolopoulos and Child [43] who have utilized a model Hamiltonian

to investigate the possible sign changes that can occur when N real quantum

states are transported adiabatically around a N -fold electronic degeneracy. and

to Baer [44] that focused on the topological features and existence of pure dia-

batic states. In a recent series of papers, we have instead advocated [19, 45, 48]

the use of Lie group symmetries to study such N -fold degeneracies in JT systems.

Two major questions have been addressed: (i) how many of the electronically

degenerate states are subject to GP? (ii) can the GP effect be treated in a way

similar to what is commonly done for the 2D Hilbert-space case? The basic idea

is then to provide relevant answers of chemical physics interest without having

to perform a diagonalization of the JT matrix and follow up the GP change in

2Although the notation is rather variable in the literature, we use the notation E for doublets, T
for triplets, G for quartets and H for quintets.
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configuration space, but rather make use of symmetry invariants that are inher-

ent to each system. Interestingly, such a work has also suggested [48] that the

LH theorem can provide a rationale for any arbitrary N -fold, JT type, electronic

degeneracy.

The structure of this Chapter is as follows. After a presentation of the SE

in section 6.2, the BO approximation follows in section 6.3 and its subsec-

tions, where the following issues are discussed: separation of the electronic

and nuclear motions, coupled-channel treatment, scaling properties, BO valid-

ity, and diabatic states. A generalized BO formulation will then be discussed in

section 6.4 for the 2D Hilbert space case, thus accounting for the topological

implications due to conical intersections. After a brief presentation of function

space in section 6.5, attention is driven to the treatment of higher-dimensionality

JT manifolds in section 6.6, and to the generalization of the LH theorem in sec-

tion 6.7. Section 6.8 explores the possibility of using the novel formalism also

for solving the dynamics of the nuclear motion. The work presented is tentative

and is currently being explored in our Group. Because specialized books and

reviews have recently covered some of the topics discussed in the present re-

port, this will focus primarily on the author’s own work. The Chapter concludes

with section 6.9.

6.2 The electronuclear Schrödinger equation

The SE describing the complete time-dependent many-body problem as-

sumes the form

ι–h
∂

∂t
Ω̃(re, rn, t) = Ĥ(rn, re)Ω̃(re, rn, t) (6.1)

where t represents the time, re = {xi} (i = 1, . . . , 3N ) denotes the collective

positions of the N electrons, rn ={XI} (I =1, . . . , 3M) those of the M nuclei, the

molecular Hamiltonian assumes the form

Ĥ(re, rn) = −
–h2

2mn
Δn −

–h2

2me
Δe + V (re, rn) (6.2)

where me is the mass of the electron and, for simplicity, all nuclei have been

assumed to have the same mass mn; Δe =
∑N

i=1∇2
i and Δn =

∑M
I=1∇2

I are the
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corresponding Laplacians, with ∇i =∇i,x î +∇i,yĵ +∇i,z k̂ and ∇I =∇I ,xî +∇I ,yĵ +

∇I ,zk̂. Note that the potential energy V (re, rn) is assumed to be a real function 3.

Although Ω(re, rn, t) is in general a function of the coordinates and time and

cannot be expressed as a function only of time multiplied by another function

only of coordinates, it turns out that we can express any solution of the SE

as the sum of a series of separable ones. Substitution of the simple product

Ω̃(re, rn, t) = Ω(re, rn)φ(t) into SE (6.1) and dividing both sides of the resulting

equation by Ω(re, rn) then yields:

ι–h
φ(t)

dφ(t)
dt

=
1

Ω(re, rn)
Ĥ (re, rn)Ω(re, rn) (6.3)

Note that Ĥ has been chosen to be a function only of the spatial coordinates,

and not of t, such as to make the first expression in this equation a function only

of t, and the second a function only of re and rn. It can then be concluded that

both expressions are equal to a third that can be neither a function of spatial

coordinates nor of time. If this is designated by a constant E, two differential

equations can be extracted:

1
φ(t)

dφ(t)
dt

= − ιE
–h

(6.4)

and

Ĥ(rn, re)Ω(re, rn) = EΩ(re, rn) (6.5)

The former can be solved to yield φ(t) = exp
(−ιEt/–h). Because the Hamiltonian

is a Hermitian operator, its eigenvalues (and hence E) must be real, with the

solutions φ(t) being purely oscillatory. Thus, if

Ω̃(re, rn, t) = Ω(re, rn) exp
(−ιEt/–h) , (6.6)

the total wave function Ω̃(re, rn, t) differs from Ω(re, rn) only by a phase factor

of constant magnitude. Of course, Eq. (6.6) is a particular solution of Eq. (6.1).

A general solution will therefore be given by a linear combination of such par-

ticular solutions:

Ω̃(re, rn, t) =
∑
i

ciΩi(re, rn) exp
(−ιEit/–h) (6.7)

3A complex potential acts as a source or sink of probability [49].
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Finding solutions of the time-independent SE will then generate the components

that are necessary for building the time dependent solutions. It is on the time-

independent SE that the discussion will be focused hereinafter.

6.3 The BO approximation

Assuming the atomic system of units where –h=me =1 and defining the mass

ratio ε4 =me/mn, Eq. (6.2) assumes the form

Ĥ(re, rn) = − ε4

2
Δn + Ĥe(re; rn) (6.8)

where

Ĥe(re; rn) = −1
2
Δe + V (re; rn) (6.9)

is the electronic Hamiltonian that depends parametrically on rn through

V (re; rn). Clearly, in the limit of infinitely massive nuclei, these will not move

from their positions and the electrons will feel only the Hamiltonian Ĥe for the

frozen nuclei positions. This provides the motivation for decoupling the elec-

tronic and nuclear motions, since the latter are at least 1836 times as heavy as

an electron. Because the nuclei move slowly, it is then a good approximation

to assume that the electrons move subject to a Hamiltonian that depends on the

position of the nuclei at a given instant.

An alternative derivation of the electronic SE is by assuming that the nuclei

can be treated classically. The nuclei will then be described by trajectories rn(t),

with Ĥe being thought to depend on rn or time. If such an assumption is made,

the nuclei will move infinitely slowly as we have an Hamiltonian Ĥe(t) that

changes very slowly with time. If the electrons begin in an eigenstate of Ĥe(0),

they will then adiabatically follow this eigenstate along such a trajectory ending

up in an eigenstate of Ĥe(t). Note, however, that the BO approximation does

not treat the nuclei classically and that, for slowly moving nuclei, the electronic

SE follows naturally.
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6.3.1 The electronic Schrödinger equation

The time-independent electronic structure problem is defined by the eigen-

value equation

Ĥe(re; rn)|Ψi(re; rn)〉 = Ei(rn)|Ψi(re; rn)〉 (6.10)

where |Ψi(re; rn)〉 ∈ Hf ≡ SaL2(IR3N ): it belongs to the Hilbert space for the

“fast” electronic degrees of freedom. Because the electrons are fermions, Sa

will then project onto the antisymmetric wave functions. In addition to bound

states, Ĥe(re; rn) has in general a continuous spectrum, with the eigenvectors

of Eq. (6.10) being normalized: 〈Ψi(re; rn)|Ψj(re; rn)〉 = δij , with the eigenvalues

labeled as E1(rn) ≤ E2(rn) ≤ . . . including multiplicity. The graph of Ei(rn)

will be called the i-th BO PES. As a rule, such a PES will display a complicated

topology with crossings and avoided crossings. For the wave functions of the

slow coordinates one has Hs ≡ L2(IR3M), recalling that to impose the physically

correct statistics for the nuclei requires extra considerations [26].

6.3.2 The nuclear Schrödinger equation

Once the electronic SE is solved, one can write down the effective Hamilto-

nian for the nuclei by simply adding back in the terms that were left out of

Ĥe:

Ĥn = − ε4

2
Δn + Ei(rn) (6.11)

Thus, the nuclei move on an effective PES that is defined by the electronic

energy, with the wave functions for the nuclei alone being eigenfunctions of

this Hamiltonian

[
− ε4

2
Δn + Ei(rn)

]
|ΦIi(rn)〉 = EIi|ΦIi(rn)〉 (6.12)

Note that Eqs. (6.10) to (6.12) do not treat the electrons and nuclei as independ-

ent particles: the parametric dependence of the electronic eigenstates, expressed

as usual by the semicolon4, introduces as we shall see a non-trivial coupling

4The obvious dependence of Ψi(re; rn) and Ĥe(re; rn) in the electronic coordinates will be omit-
ted for brevity after Eq. (6.13).
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between the two that reflects on topological implications. Thus, the electronic-

nuclei decoupling needs not be complete for the BO approximation to be valid.

In summary, if the electrons are in an electronic state i and the nuclei in the I -th

state of the i-th electronic state, the total electronuclear wave function can be

specified as

|Ω(re, rn)〉 = ΦIi(rn)|Ψi(re; rn)〉 (6.13)

where we have used a mixed representation: the nuclei will be described using

wave mechanics notation while the electrons employ the popular (brac-ket)

Dirac’s notation.

6.3.3 The Born-Huang ansatz and coupled-channel treatment

The BO approximation is extremely accurate by itself, as explained by its

widespread use through chemistry. Even when it fails, the result may be ex-

plained by assuming that the system is adiabatic almost all time, with only a

few isolated regions where corrections need to be accounted for. Thus, it is

convenient to consider the exact SE expressed in the basis defined by the BO

approximation.

Since the electronic eigenstates for any fixed choice of rn form a complete

basis that satisfies Eq. (6.10) and, correspondingly, the nuclear eigenstates form a

complete basis that satisfies Eq. (6.12) for any i-state, one may conclude that the

set of products {ΦIi(rn)|Ψi(rn)〉} forms a complete basis for expanding any wave

function that describes the electrons and nuclei. The total electronuclear wave

function can therefore be exactly expressed (CJj are expansion coefficients) in

terms of the so-called Born-Huang ansatz as:

|Ω(re, rn)〉 =
∑
Jj

CJjΦJj(rn)|Ψj(rn)〉 (6.14)

By representing now the Hamiltonian as a matrix in the Born-Huang ansatz, one

gets

Hj′J ′jJ =
∫

Φ�
J ′ j′(rn)

[
− ε4

2
Δn + Ej(rn)

]
ΦJjδjj′drn

− ε4
∑
I

∫
Φ�

J ′j′(rn)∇IΦJj(rn).FI
j′ j(rn)drn
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− ε4

2

∫
Φ�

J ′j′(rn)ΦJj(rn)GI
j′ j(rn)drn (6.15)

where the non-adiabatic coupling matrix elements FI
j′ j(rn) = 〈Ψj′(rn)|∇IΨj(rn)〉

and GI
j′ j(rn) = 〈Ψj′(rn)|ΔnΨj(rn)〉 are the so-called first- and second-derivative

non-adiabatic coupling terms (NACTs), respectively. Clearly, the first term in

Eq. (6.15) is the BO approximation, while the second and third are corrections

to the latter that arise due to the parametric dependence of the electronic wave

function on the nuclear coordinates. The magnitude of such corrections will

depend on the rate of change (gradient) of the electronic wave function as we

change the nuclear configuration. Note that FI
j′ j(rn) is a matrix where each of its

elements is a vector that originates from the gradient of the electronic wave func-

tion with respect to the I -th nuclear coordinates. The direction of this gradient

indicates the direction in which the electronic wave function is changing fastest,

while its magnitude indicates how large the change is in absolute sense. One

then takes the overlap of this gradient with the electronic function Ψj′ . This

shows, as we vary rn, how much the change in Ψj looks like a change from

the current electronic state Ψj to another Ψj′ . Indeed, the NACT represents

the overlap of wave functions with differentiated functions. Because numerical

differentiation of a function involves its calculation at distinct points, the determ-

ination of FI
jj′ (rn) involves “delayed” overlaps in the sense that the overlapping

functions are calculated at separated nearby points. This leads one to expect that

NACTs should manifest an overlap dependence which, for realistic Slater type

orbitals, is expressed as an inverse exponential of the interatomic distance [50].

Another property of NACTs refers to their sign change. Indeed, because the

BO eigenfunctions are determined only up to a sign, it is easy to conclude that

the sign of the NACTs cannot be assigned uniquely. Criteria to fix it have been

suggested [51, 52] but none is unique. Thus, there is a wealth of information

in the FI
j′ j(rn) NACT: tells (via its magnitude) how likely non-adiabatic events

are, what physical motions it can be associated with (through its direction), and

which electronic states are involved (via overlap of the gradient of Ψj with Ψj′).

If the electronic state changes rapidly over a small distance, the term involving
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FI
j′ j(rn) is likely to be large. Conversely, the third term, so-called diagonal BO

correction (DBOC), is small and often neglected. The above is known as the

coupled channel representation: each electronic state is a distinct channel with

the Hamiltonian governing their coupling.

Let us examine briefly two subtleties of the NACTs before concluding this

section. The first refers to their dependence on the choice of origin of the

coordinate system [50, 53–60], as illustrated for various diatomic species, most

recently [50] for LiF. In fact, this origin-dependence of NACTs can be problematic

in the case of polyatomic species since the use of different coordinate systems is

known to be convenient. Unfortunately, no such a study has, to our knowledge,

been reported. A second subtlety, also raised by the origin dependence of

NACTs, refers to the fact that the latter may not vanish asymptotically, and then

present a problem in imposing the usual scattering boundary conditions. This

emerges from the fact that the difference between NACTs calculated with respect

to two different origins is proportional to the dipole transition matrix [56,57,60].

For example, in LiF the ground state curve dissociates to Li(2S)+F(2P) while

the next state of the same symmetry yields Li+(1S)+F−(1S), and hence such a

difference vanishes at R→∞ as the connection between 1S and 2P states by

the electric dipole operator is spin forbidden [50]. Remedies to the asymptotic

problem involve either the use of electron translation factors or appropriate

reaction coordinates [54–57].

We are now in position to write the full SE by replacing Eq. (6.14) in Eq. (6.5)

and multiplying on the left by 〈Ψj′(rn)|. This leads to an infinite set of coupled

equations, which may be written in matrix form as5

{
− ε4

2

[
IΔn + 2F(rn) ·∇ +G(rn)

]
+ V (rn)− EI

}
Φ(rn) = 0 (6.16)

where I is the identity matrix, Φ(rn) is a column vector whose components are

the nuclear wave functions, and V (rn) is now utilized as usual to represent the

column vector of electronic PESs {Ej(rn)}.

5When unlabeled (often indicated as ∇R), the operator nabla refers to the nuclear coordinates.
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6.3.4 Scaling properties

Born and Oppenheimer argued that the two terms on the right-hand-side

of Eq. (6.15) can be neglected as ε4 is a very small number. Indeed, if a

typical nuclear mass is taken as mn = 104 me, then ε4 = 10−4. Consider then a

diatomic vibrating close to its equilibrium geometry Xe, and express the nuclear

separation as X = Xe + εu, where the reduced distance u can be argued to be

of the same order as Xe. Thus, mn ∝ ε−4, and ∂/∂X ∝ ε−1. This leads to the

following typical scaling relationships [61]:

Typical vibrational energy ∝ 1/
√
mn ∝ ε2

Typical rotational energy ∝ 1/(mnX2
e ) ∝ ε4

First derivative coupling ∝ ε4∂/∂X ∝ ε3

Second derivative coupling ∝ ε4

6.3.5 When is the BO approximation expected to fail?

Although one is tempted to suggest that the BO approximation fails when

the nuclei are light, this turns out not to be the major problem. To see this,

consider a perturbative view where the first term (BO result) is treated as the

zeroth-order Hamiltonian and the second is the perturbation (DBOC is ignored).

Since an operator is uniquely determined by its matrix elements, the zeroth-order

operator may assume the following form:

Ĥ0 =
∑
αβ

|Ψα〉H0
αβ〈Ψβ| (6.17)

where H0
αβ =〈Ψα|Ĥ0|Ψβ〉, and α and β are compound indexes belonging to the

set of BO states that specify a particular choice of Jj. In fact, if it is assumed that

Ĥ0 =
∑
k

|Ψk(rn)〉
[
− ε4

2
Δn + Vj(rn)

]
〈Ψk(rn)| , (6.18)

thenH0
J ′j′Jj is identical to the set of matrix elements given by the Born-Oppenhei-

mer term (first-term) of Eq. (6.15). Similarly, the perturbation operator assumes

the form

Û = −ε4
∑
j′ j

∫
|Ψj′(rn)〉

∑
I

∇I · FI
j′ j(rn)〈Ψj(rn)| , (6.19)
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since its matrix elements yield the perturbation correction (second term) in

Eq. (6.15). Note that the perturbation operator Û depends on the momenta

of the nuclei. The probability of a non-adiabatic event will then depend on how

fast the nuclei are moving. Such a probability, and hence non-adiabatic effects,

are then expected to be the larger the faster the nuclei are moving. Since the

BO states are eigenstates of Ĥ0, they will cease to be a good approximation to

those of Ĥ when Û is large. However, imposing that the dynamics evolves on a

single PES may have also topological implications. How these can be overcome

will be analyzed in section 6.3.7.

6.3.6 Diabatic states

We have seen that in the BO representation the Hamiltonian can be approx-

imated by the sum of Eqs. (6.18) and (6.19). However, the first- and second-order

NACTs are difficult to deal with since by using the Hellmann-Feynman theorem

it may be shown to behave hyperbolically near the crossing seam where Vi = Vj .

One may then write [62]

FI
j′ j(rn) =

〈Ψa
j′(rn; re)|∇IHe|Ψa

j (rn; re)〉
V a
j′ (rn)− V a

j (rn)
(j′ �= j) (6.20)

which shows that the NACTs cannot be neglected especially at regions where

Vj′ approaches Vj . In fact, such a behavior is responsible for severe numerical

computational difficulties in the adiabatic approximation. On the other hand,

the potential matrix assumes its simplest form by being diagonal in the BO

(adiabatic) approximation, Vj′ j = Vjδj′ j . Clearly, one would then like to avoid the

calculation of NACTs. Because they arise due to the fact that the electronic wave

function depends parametrically on the nuclear coordinates, one may think of

choosing a rn-independent basis set, say by defining a complete electronic basis

set for a selected geometry of the nuclei. Of course, there are many ways for

doing it, and any such basis will be referred to as a diabatic basis [63–66].

Consider now the following (adiabatic-to-diabatic) ATD unitary transforma-
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tion:

|Ω(rn, re)〉 =
∑
jJ

CJjΦ
a
Jj(rn)|Ψa

j (rn; re)〉 = CΨa†UU†Φa ≡ CΨd†(r;R)Φd(R)

(6.21)

where the explicit dependence of the operators and wave functions is often

ignored hereinafter for simplicity, and the superscript a(d) has been added to

indicate ‘adiabatic’ (diabatic). By replacing Φa =UΦd in Eq. (6.16), where U is

an orthogonal matrix, one obtains the following result [67]:

{
− ε4

2
UΔn − ε4

2
[ΔnU + 2F (∇U) +GU]

− ε4 (∇U + FU)∇ +
(
Va − EI

)
U
}
Φd = 0 (6.22)

Assuming now that U can ideally be chosen to solve

∇U + FU = 0 , (6.23)

it can be shown that Eq. (6.22) will then reduce to(
− ε4

2
IΔn + Vd − EI

)
Φd = 0 (6.24)

where

Vd = U†VaU (6.25)

Note that |Ψd
j 〉 does not vary with rn, and hence FI

jj′ = 0 in the diabatic basis.

Conversely, the diabatic states will not diagonalize the electronic Hamiltonian,

which becomes instead more complicated. This shows that the substitution of

the adiabatic ansatz by the diabatic one does lead to a system of coupled dif-

ferential equations similar to Eq. (6.16) but with some notable differences. First,

the potential matrix becomes nondiagonal in the diabatic basis. In fact, the

adiabatic potential matrix is diagonal, while in the diabatic basis it becomes a

source of transitions between the surfaces. Second, the matrix elements of the

nuclear kinetic energy operator disappear, but off-diagonal terms arise instead

in the diabatic potential matrix. Of course, if a complete basis set is assumed, the

unitary transformation in Eq. (6.25) warrants that the eigenvalues of the diabatic
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potential matrix coincide with the adiabatic potentials in Eq. (6.16). In practice,

the diabatic basis is most useful very near a crossing or avoided crossing. Un-

fortunately, it is not possible to find strictly diabatic electronic states for which

FI
j,j′(rn) vanishes everywhere. Indeed, even if the adiabatic and diabatic results

would coincide in the limit of an infinite basis, such diabatic states would not be

very useful in practice due to the large number of them that would be required

to describe the electronic structure. Often a linear combination of a small set of

Nad adiabatic states is instead chosen to be maximally diabatic:

|Ψ̃d
k 〉 =

Nad∑
ki

cki(rn)|Ψad
i (rn)〉 (6.26)

If there is only one degree of freedom, we can even do this by choosing our

maximal diabatic states [68] so that dI
jj′ (rn) is diagonal:〈

Ψ̃d
j (rn)

∣∣∣∣ ∂

∂rn

∣∣∣∣Ψ̃d
j′(rn)

〉
∝ δjj′ (6.27)

In this case, the diabatic states become the set of electronic states that diagonalize

the nuclear kinetic energy operator, whereas the adiabatic states diagonalize

Ĥe(rn). The point to emphasize is that the PES is no longer single-sheeted,

but (nonadiabatic) multi-sheeted by assuming the form of a potential matrix.

Suffice it too add that there is considerable interest in methods that yield a

diabatic potential matrix from an adiabatic one as this can facilitate drastically

the nonadiabatic dynamics calculations.

A wide variety of methods for producing diabatic potentials has been re-

ported in the literature [50, 69–86], as well as (diabatic) multi-sheeted PESs [70,

71, 73, 74, 80, 82, 84, 85, 87–96] (the list is by no means comprehensive). Such

methods can be divided in two categories [85] according to whether they

merge into the proper adiabatic states at the asymptotes or not. The dir-

ect diabatization approach gathers methods that yield directly the diabatic

states [70, 71, 73–78, 80–84, 97], either from ab initio energies or diabatic elec-

tronic wave functions, thus without any intermediary. The second class includes

three subclasses. One includes approaches that model the various diabats from

regions of the adiabatic potentials where they are supposed to play the dominant
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Domcke et al. (1993, 1994)
Heumann et al. (1993)
Simah et al. (1999)
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Use 2 × 2 diabatic potential
matrix with adjustable parameters
Murrell et al. (1980, 1981, 1982, 1984)
Topaler et al. (1998)
Hack & Truhlar (1999)
Jasper et al. (2002)

Fit diabatic matrix elements
to diabatic energies
Dobbyn et al. (1997, 1999)
Boggio-Pascua et al. (2000)

Fit diabatic states with
global diabatization angle
Mota & Varandas (2008)
Varandas (2009)

yes

Figure 6.1. Schemes for adiabatic-to-diabatic transformation of PESs (see text).

role, thus warranting the desired asymptotic behavior by built-in construction.

In another subclass the diabatic states are built with the help of molecular prop-

erties [69, 72, 79] that behave akin to the potential energy, in particular dipole

or transition moments. In the third subclass, the various diabatic potentials

are calculated and then assembled via a global diabatization angle. Figure 6.1

summarizes the various types of diabatization methods, with the reader being

referred to Ref. 85 and the original papers for further details.

A final comment to readdress the issue of dependence on the origin of the

NACTs in adiabatic theory (section 6.3.3). Although one may be tempted to

think this to be a definite advantage for doing the scattering within the diabatic

picture (derivative couplings are replaced by potential couplings; Ref. 98, and

references therein), this is not quite so as the NACTs are still required to get the

diabatic potential matrix.

6.3.7 Topological implications of the BO approximation

As noted above, the nuclei can be treated classically in the BO approximation.

They may then be described by trajectories rn(t), with Ĥe thought to depend on
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rn or time. If such an assumption is made, the nuclei will move infinitely slow

as the Hamiltonian Ĥe(t) changes slowly with time. Consider then an arbitrary

path rn(t). The non-stationary time-dependent electronic SE along such a path

assumes then the form

Ĥe
(
rn(t)

)
Ψ
(
rn(t)

)
= ι–h

∂Ψ
(
rn(t)

)
∂t

(6.28)

where the obvious dependence of Ĥe and Ψ on re has been omitted for simpli-

city. Using the electronic basis set
{
Ψi

(
rn(t)

)}
, the wave function may now be

expanded as

Ψ
(
rn(t)

)
=
∑
j

cj(t)Ψj
(
rn(t)

)
exp

[
− ι
–h

∫ t

Ej
(
t′
)
dt′

]
(6.29)

where the term in the exponential is the dynamical phase. Eqs. (6.28,6.29) then

yield

ι–h
dck
dt

=
∑
j

cj

{
Hij − Ejδij − ι–h〈Ψk

(
rn(t)

) ∣∣∣∣∂Ψj
(
rn(t)

)
∂t

〉

exp

[
− ι
–h

∫ t (
Ej − Ek

)
dt′

]}
(6.30)

If the NACTs for j �= k are now neglected, and noting that Hkj = Skj = 0 for the

adiabatic basis set, it follows that

dck
dt

= −
〈
Ψk

(
rn(t)

) ∣∣∣∣∂Ψk
(
rn(t)

)
∂t

〉
ck (6.31)

and hence

ck = exp

[
−
∫ t 〈

Ψk
(
rn(t′)

) ∣∣∣∣∂Ψk
(
rn(t′)

)
∂t′

〉
dt′

]
= exp

[
ιAk(t)

]
(6.32)

where Ak(t) = ι
∫ t〈Ψk

(
rn(t′)

) |∂Ψk
(
rn(t′)

)
/∂t′〉dt′ is the GP. Thus, retaining only

one term in the wave function expansion, one has

Ψ
(
R(t)

)
= Ψi

(
rn(t)

)
exp

[
− ι
–h

∫ t

Ei
(
t′
)
dt′

]
exp

[
ιAi(t)

]
(6.33)

which has the form of a generalized Born-Huang ansatz. Besides the dynamical

phase factor of time evolution (first factor), a GP must be included. If the
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Figure 6.2. Distortions of a triatomic leading to appearance of GP in the E ⊗ e problem.

molecule performs a motion such that after some time t = τ it returns to its

original position at time t = 0 [R(τ) = R(0)], then the wave function may not

only have acquired a dynamical phase as described by exp[−(ι/–h) ∫ t
Ei
(
t′
)
dt′].

Indeed, two possibilities exist: first, that the remaining part of the wave function

has returned to its original value; second, that it has changed sign which simply

requires that Ai(τ) = Ai(0) + π. Recall that the sign of a wave function cannot be

fixed, since it is its square that leads to an interpretation as a probability.

One may then ask when to expect the geometrical phase effect. The simplest

case is that of H+
3, a symmetric triatomic molecular ion which has the shape of

an equilateral triangle [99]. Further examples are clusters built from hydrogen

or alkali (lithium, sodium, potassium, etc) atoms. Such molecules may perform

a motion, called pseudo-rotation, in which each of the three nuclei moves on a

circle around its equilibrium position. If at the same time the molecule is in a

degenerate electronic state, pseudo-rotational motion as illustrated in Figure 6.2

will build up a GP.

6.4 Generalized Born-Oppenheimer approximation

As noted above, the BO approximation breaks down at conical intersec-

tions since a real electronic wave function changes sign [20, 21, 100] whenever

traversing a nuclear path that encircles the locus of degeneracy. Because the
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total electronuclear wave function must be continuous and single-valued, the

nuclear wave function must change sign too such as to compensate the sign-

change of the electronic counterpart. Although Ψj (rn) and ΦJ (rn) may not be

single-valued if real, there is no impediment to take them as complex in the

Born-Huang [101] ansatz. For example, one may write

Ω (re, rn) =
∑
Jj

ΦJj (rn) exp[iAj (rn)]Ψj (rn) =
∑
Jj

ΦJj (rn) Ψ̃j (rn) (6.34)

where Aj (rn) is the GP chosen to make the complex electronic wave function

Ψ̃j (rn) [and hence Ω (re, rn)] be single-valued. Eq. (6.34) may alternatively be

written as

Ω (re, rn) =
∑
J

Φ̃Jj (rn)Ψj (rn) (6.35)

where the complex nuclear wave functions
{
Φ̃Jj (rn)

}
are now chosen to make

Ω (re, rn) be single-valued. If the ansatz in Eq. (6.35) is used, a set of coupled

equations similar to Eq. (6.16) is obtained but with the real-valued nuclear wave

functions replaced by the complex ones Φ̃J (rn). If only the diagonal matrix

elements are retained, then one gets{
− ε4

2

[
Δn +Gjj (rn)

]
+ Vj (rn)− E

}
Φ̃j (rn) = 0 (6.36)

Alternatively, if real nuclear wave functions as in Eq. (6.34) are employed, one

has {
− ε4

2

[∇ + ι∇Aj (rn)
]2

+ V̄j (rn)− E

}
Φj (rn) = 0 (6.37)

where

V̄j (rn) = Vj (rn)− ε4

2
G̃jj (rn) (6.38)

with G̃jj (rn) assuming the form given above but with the electronic wave func-

tions tilded. Note that F̃jj (rn) = ι∇Aj (rn) + Fjj (rn) = ι∇Aj (rn) since, for

real-valued electronic wave functions [102], Fjj (rn) = 〈Ψj (rn) |∇Ψj (rn)〉 = 0.

Eq. (6.36) and Eq. (6.37) represent then a single-surface approach usually known

as generalized BO approximation [40, 103]. Note that the ansatz in Eq. (6.34)

leads to the appearance of a vector potential in the nuclear SE [26, 104, 105].
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Note further that the rn-dependence of Aj must reflect the presence of any con-

ical intersection in accordance with the GP [21, 24] condition, and hence can

generally be constructed only once the conical intersections have been located.

Although a general approach for determining Aj (rn) has been suggested by

Kendrick and Mead [103], it remains a nontrivial task. An alternative is to use

Eq. (6.35), where the complex phase factor has been absorbed in the nuclear

wave functions [106–108]. Such an approach is especially convenient for X3-

type systems when using hyperspherical coordinates [36, 109], although it can

be generalized [40,110,111] to asymmetric cases. Of course, in the absence of a

conical intersection, both Eq. (6.36) and Eq. (6.37) lead to the standard adiabatic

nuclear SE [
− ε4

2
Δn + V̄j (rn)− E

]
Φj (rn) = 0 (6.39)

since D̃ J
jj (rn)=D

J
jj (rn), and one may choose Aj (rn)=0.

Consider now a 2× 2 potential matrix W that is invariant and restricted to E

space:

W = WA1

(
1 0
0 1

)
+WEx

( −1 0
0 1

)
+WEy

(
0 1
1 0

)
(6.40)

where WA1 , WEx , WEy are functions of the nuclear coordinates transforming un-

der6 the C3v symmetry group; as usual in polar coordinates, x = ρ cosϕ, and

y = ρ sinϕ. The eigenvalues of W, which reduce to the degenerate pair at the

conical configuration, will then assume the form

W± = WA1 ±Wρ (6.41)

where Wρ =
(
W 2

Ex +W 2
Ey

)1/2
. To all orders, they assume the form [112]

WA1 =f1
[
z; ρ2, ρ3 cos(3ϕ)

]
(6.42)

WEx =ρ cosϕf3
[
z; ρ2, ρ3 cos(3ϕ)

]
+ ρ2 cos(2ϕ)f4

[
z; ρ2, ρ3 cos(3ϕ)

]
(6.43)

WEy =ρ sinϕf3
[
z; ρ2, ρ3 cos(3ϕ)

]− ρ2 sin(2ϕ)f4
[
z; ρ2, ρ3 cos(3ϕ)

]
(6.44)

6We may consider only this subgroup of D3h since no out-of-plane bending is possible for a
triatomic system. The component WA2 must vanish, since W must be Hermitian, and in our case
can be real.
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where fi (i=1−4) are functions formally representable as a double power series

in their arguments other than z, with the coefficients being constant or functions

of z. From Eq. (6.41) to Eq. (6.44), it follows:

WA1 = WA1

(
z; ρ2, ρ3 cos 3ϕ

)
(6.45)

WR = r
(
f 2 + ρ2g2 + 2ρfg cos 3ϕ

)1/2
(6.46)

→ ρw
(
z; ρ2, ρ cos 3ϕ

)
(ρ→ 0) (6.47)

where f = f (z; ρ2, ρ3 cos 3ϕ), g=g(z; ρ2, ρ3 cos 3ϕ), and w are analytic functions.

Eqs. (6.42)-(6.44) define the correct behavior of the PES in the vicinity of the

conical intersection, and hence may be valuable in delineating fitting forms [112,

113]; for recent work on fitting and interpolation methods, the reader is referred

to Refs. 114 and 115.

Let now γ̃ be an angle, itself a function of the nuclear coordinates, such that

WEx = Wρ cos γ̃, WEy = Wρ sin γ̃ (6.48)

In terms of the degenerate pair of wave functions (ψx,ψy), we may write the

two adiabatic ones (Ψ+,Ψ−) corresponding to the eigenvalues of Eq. (6.41) as

Ψ+ = ψx sin(γ̃/2) + ψy cos(γ̃/2), (6.49)

Ψ− = ψx cos(γ̃/2)− ψy sin(γ̃/2) (6.50)

which cannot be single-valued due to the appearance of γ̃/2 (note that both Ψ+

and Ψ− change sign when γ̃ increases by 2π). Thus, γ̃/2 is the mixing angle that

yields the adiabatic states from the diabatic ones (i.e., diagonalizes the diabatic

potential matrix). Single-valuedness is warranted by defining [26,104] the GP as

A+(R)=A−(R)=3ϕ/2, although other possibilities exist [40,41] (see also Ref. 42).

Since 〈Ψ+|Ψ−〉 = δ±, one gets

d̃ = d = 〈Ψ̃−|∇Ψ̃+〉 = −〈Ψ̃+|∇Ψ̃−〉 (6.51)

Using now Eq. (6.49) to Eq. (6.51), one obtains

d = dlon + dtra (6.52)
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where the curl-free longitudinal and divergence-free transverse (solenoidal)

parts of the derivative coupling are given by [112]

dlon =
1
2
∇γ̃ (6.53)

dtra = 〈ψx|∇ψy〉 (6.54)

a result which is a consequence of the general Helmoltz decomposition theorem.

The longitudinal part of d shows a singularity at the conical intersection

but this singularity can be removed by a coordinate-dependent unitary trans-

formation [116]. Moreover, from Eq. (6.43), Eq. (6.44) and Eq. (6.48), one may

write [112]

tan γ̃ =
f sinϕ− ρg sin(2ϕ)
f cosϕ + ρg cos(2ϕ)

(6.55)

and defining ε such that γ̃ = ϕ + ε, one has

tan ε = − ρg sin(3ϕ)
f + ρg cos(3ϕ)

(6.56)

Thus,

dlon =
1
2
∇rn

{
ϕ− tan−1

[
ρg sin(3ϕ)

f + ρg cos(3ϕ)

]}
(6.57)

which defines the correct analytic properties of the nonadiabatic coupling near

the seam of a potential energy surface exhibiting a C3v conical intersection [112,

113, 117, 118].

Eq. (6.53) can be solved by integration along paths in the nuclear configur-

ation space [119, 120]. The result will depend on the initial and final points of

integration but not on the path chosen. Due to the LH theorem [20, 21, 100],

if the integration is carried out along a closed loop C, γ̃/2 should change

by [24, 120, 121]

ξγ̃ =
∮
C
dlon (rn) drn = pπ (6.58)

where p = 0 if C does not enclose any conical intersection, but is 1 if it does

enclose one.

The transverse part remains finite at the seam, and cannot generally be trans-

formed away to zero for a polyatomic system [116, 119]. However, one may
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think of defining an (adiabatic-diabatic transformation, ATD) angle [66, 76, 119]

α(rn) such that

d = ∇α(rn) (6.59)

which would be [up to a constant, cf. Eq. (6.53)] identical to the angle capable

of transforming the adiabatic basis to a diabatic one or vice-versa. Similarly, a

topological phase [122] can be defined as

ξα =
∮
C
d (rn) drn (6.60)

Since d does not generally satisfy Eq. (6.53), the result of such an integration

will be path-dependent [116]. However, since the transverse part is finite (and

possibly negligible upon optimal adiabatization [118]), one may expect to have

ξγ̃ = ξα. As noted above, the mixing angle γ(rn) = γ̃/2 that diagonalizes the

potential matrix is (up to a constant) identical to α(rn) [41], and also to the GP

Aj(rn) [40].

6.5 Configuration vs function space, and conservation laws

The configuration space forms the natural frame where to represent an adia-

batic PES. For the purpose of studying the JT effect, only the subspace defined

by the coordinates that are JT active is required since it contains all distorted

configurations that may be reached by such vibrational modes. Their complete

set subtends a real Cartesian space of dimension τ =[Γ2]−1 known as [123] the

configuration space v or simply configuration space. Figure 6.3 illustrates such

a space the case of a triatomic belonging to the symmetry group C3v, where the

symmetric product leads to [E2
1 ]=A1⊕E1. The v-space will then be defined by the

e-type vibrations that span the 2D space
{
QEx ,QEy

}
, which can be expressed

in terms of the three bond distances (R1,R2,R3) either as linear symmetrized

combinations of bond distances

⎛
⎝ Q1

Q2

Q3

⎞
⎠ =

⎛
⎝ 1/

√
3 1/

√
3 1/

√
3

0 1/
√
2 −1/√2

2/
√
6 −1/

√
6 −1/

√
6

⎞
⎠
⎛
⎝ R1

R2

R3

⎞
⎠ (6.61)
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Figure 6.3. Locus of symmetry point groups assuming that the group operations are
applied to three identical nuclei A, B, and C (denoted by the colored dots). The Cs

symmetry is intrinsic to the entire physical circle based on the coordinates in Eq. (6.62)
[corresponding considerations apply to the physical triangle when using Eq. (6.61)]. Mo-
lecular conformations obtained by following a closed path around the origin are also
shown. K ′, L′, and M ′ indicate the points where the ‘physical triangle’ and ‘physical
circle’ centered at the origin of the coordinate system touch each other and the circun-
scribing equilateral triangle employed for the relaxed triangular plot [124]. Completion
of a circular motion of the three atoms in panel (a) originates a circular path around the
origin in Figure 6.2. Q2 and Q3 correspond to QEx and QEy , respectively. See the text.

or of their squares, ⎛
⎝ Q

β
γ

⎞
⎠ =

⎛
⎝ 1 1 1

0
√
3 −√3

2 −1 −1

⎞
⎠
⎛
⎝ R2

1
R2
2

R2
3

⎞
⎠ (6.62)

Note that Q1 and Q transform as A1, while {Q2,Q3} and (β, γ) transform as

the degenerate pair of E-symmetry
{
QEx ,QEy

}
. Note further that the locus of

degeneracy is in this case a 0D manifold embedded in that space, a point that

coincides with the JT origin (Q2 =0,Q3 =0). In the vicinity of the crossing point,

the PES will appear in the (β, γ) representation as a double cone, as it could be
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Figure 6.4. Perspective view [124] and contour plots of the adiabatic DMBE PESs of [125]
H+

3(
4A′) using hyperspherical coordinates. Also indicated are the asymptotic channels.

Contours generated from En/Eh =−1.116 + 0.000447n2 , where n is the contour number.

anticipated from Eq. (6.48). A realistic example is illustrated in Figure 6.4 for the

H+
3(

3A′) ion, where we have utilized the symmetrized coordinates in Eq. (6.62)

suitably relaxed [124] (β* =β/Q, γ* =γ/Q) such that Q corresponds at each point

to the structure of lowest energy for that symmetry. They can be related to the

hyperspherical coordinates [36] (ρ, θ,ϕ) through the relations

R2
1 =

1
2
d2
1ρ

2

[
1 + sin

θ

2
cos(ϕ + χ3)

]
(6.63)

R2
2 =

1
2
d2
2ρ

2

(
1 + sin

θ

2
cosϕ

)
(6.64)

R2
3 =

1
2
d2
3ρ

2

[
1 + sin

θ

2
cos(ϕ− χ1)

]
(6.65)

where d2
i = mi/μ

(
1−mi/M

)
, χi = 2 tan−1

(
mi+2/μ

)
, μ =

(
m1m2m3/M

)1/2
, and

M =
∑

i mi. Thus, the plot in Figure 6.4 corresponds to a stereographic pro-

jection of the surface of an upper half sphere. The β� coordinate corresponds

to sin
(
θ/2

)
cosϕ, while γ� denotes sin

(
θ/2

)
sinϕ. The hyperangle θ runs from
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zero at the north pole (center of plot) to π/2 at the equator. In turn, the hy-

perangle ϕ is measured from the positive β� axis and grows on going counter-

clockwise. Note the three equivalent weak minima separated from each other

by a tiny barrier that along the trough for pseudorotation.

A second example refers to threefold electronic degeneracies that are inher-

ent to cubic groups T , Td , O, Oh, and icosahedral groups I and Ih [11]. In the

absence of inversion centers, [T 2
1 ] = [T 2

2 ] = A1⊕E⊕T2, while in the presence of

inversion, the result is [T 2
1g]= [T

2
1u]= [T

2
2g]= [T

2
2u]=A1g⊕Eg⊕T2g. Thus, the JT active

vibrations for a threefold degenerate electronic term (T1 or T2) are of e or t2 sym-

metry: T⊗(e⊕ t2) problem. If the coupling of the two t modes can be neglected,

the analysis of the JT effect will be restricted to 5D space [126] defined by the

normal coordinates
{
QEx ,QEy

}
for the e representation (tetragonal-type coordin-

ates), and
{
QTx ,QTy ,QTz

}
for the t2 representation (trigonal-type coordinates).

Of course, such a space cannot be fully visualized. A possible way for reducing

the dimensionality consists of assuming that the vibronic interaction with one

of the two types of vibrations can be neglected. For other degenerate electronic

terms interacting with degenerate vibrations, see Ref. 13.

Due to H invariance under time-reversal, the space of the electronic BO

wave vectors can also be represented by a (N − 1)-sphere in ND real space as

the BO dynamics is known [123] to realize an adiabatic mapping of the v-space

into such a projective function space ( f -space). An arbitrary adiabatic electronic

state assumes then the form

|Γγ〉 =
∑
i=1,|Γ|

ci|Γγi〉 (6.66)

with norm preserving requirement
∑

i c
�
i ci = 1. The allowed transformations

in f -space will then involve rotations or reflections of the points on the unit

sphere. Its full symmetry group is O(|Γ|), and the elements orthogonal matrices

describing the transformation of the directional cosines ci. Symmetry elements of

the finite group G will then induce orthogonal matrix transformations, with the Γ

matrix representation of G being a subgroup of O(|Γ|). Of course, an advantage

of the f -space is the lower number of parameters required to characterize an
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arbitrary state: (N − 1) vs τ for the f vs v spaces, respectively. The latter has

been suggested by Ceulemans [123] to represent the PES itself, although we will

utilize [48] it to characterize the GP effect by examining the outcome of matrix

applications on an arbitrary electronic eigenvector.

Conservation laws and symmetries play a key role both in physics and math-

ematics as they allow to specify the dynamics of the system in terms of the first

integrals of the motion. Noether’s theorem plays in this context a prominent

role by stating that the action admits an r-parameter Lie group as variational

symmetries if there are r proper conservation laws. Thus, the vibronic Hamilto-

nian in the E ⊗ e system has the symmetry of the one-parameter axial group

O(2) because there is just one conserved quantity. In fact, diagonalization of the

vibronic JT matrix shows that the component Lz of the angular momentum is the

only constant of the motion, with the mixing (pseudo-rotation) angle that char-

acterizes the unitary matrix being αz . Similarly, the symmetry of the Hamiltonian

of the T ⊗ (e⊕ t2) system is [11] SO(3), a 3-parameter Lie group. In this case, the

3× 3 rotation matrix that diagonalizes the vibronic JT matrix assumes the form

of a product of 3 planar rotations in configuration space, with a pseudo-rotation

angle associated to every conserved component of the total angular momentum.

Similar considerations hold for systems associated to other Lie groups; the sym-

metry invariances of the relevant linear JT Hamiltonian operators are discussed in

the literature [11] (see also Table 2.3 of Ref. 19). It turns out that the group G has

a dimension that does not generally coincide with the number of mixing angles

required to describe an adiabatic electronic state in its associated function space.

For example, only 2 mixing angles are necessary to describe the T ⊗ (e ⊕ t2)

problem while 3 suffice for the G ⊗ (g ⊕ h) one, respectively of dimensions 3

and 6. The former may be rationalized from the fact that only two combinations

of its 3 invariants (the components of the angular momentum operator Jx, Jy and

Jz), say J 2 and Jz , are known to commute. As a result, only 2 quantum numbers

(or, equivalently, mixing angles) suffice to specify unambiguously an adiabatic

electronic wave vector of the T ⊗ (e⊕ t2) system. Similarly, although the orbital

angular momentum in a 4D Cartesian space is described by 6 orbital angular mo-
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mentum operators, only 4 commuting combinations arise, one corresponding to

an operator that vanishes identically [127]. This indicates that 3 mixing angles

only suffice to describe an adiabatic electronic wave vector for the G ⊗ (g ⊕ h)

problem. In fact, and more generally, although a set N (N−1)/2 components of

the generalized orbital angular momentum can be defined for the N -fold prob-

lem, only (N−1) commuting generalized orbital angular momentum operators

are known to commute. Thus, they possess simultaneous eigenfunctions that

depend on (N−1) angular variables [128]. As above, this may explain why only

(N −1) angles are required to characterize unambiguously the corresponding

adiabatic electronic wave vector [19, 45, 48].

The mapping in the electronic sphere is, however, two-valued since antipodal

pairs of eigenvectors (|Γγ〉 and −|Γγ〉) refer to the same point in v-space: a

physical state may be described by any wave vector in a ray [129]. This has

implications on the GP analysis, since two classes of paths (closed loops) in v-

space can be recognized [28]: paths that are continuously contractable to a point

(classΠ1) and hence manifest no GP, and paths (Π2) that manifest GP by showing

a sign-change of the electronic state when going from a point A to its antipodal

A′. Additionally, there are paths that connect a point to its antipodal without

manifestation of GP, thus sign change. This is possible [28] provided that a point

Qd exists on the path where the mapping is degenerate by linking not just a

pair of opposite points but a whole circle of linear combinations cos θ|ψ1(Qd)〉+
sin θ|ψ2(Qd)〉 of two degenerate electronic states (path Δ in Figure 6.5).

6.6 Case studies of Jahn-Teller vibronic coupling

6.6.1 e⊗ E

The title JT problem has been much studied, and hence will serve here the

purpose of comparing the two different formalisms discussed in the previous

sections. Let the BO electronic wave vectors be {ψ1,ψ2} = {|Ex〉, |Ey〉} [19, 45].

The two adiabatic wave vectors can then be unambiguously expressed in f -space
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|Ex〉

|Ez〉

|Ey〉

Π2

Δ

ξ12

ξ23Π1

A

A′

Figure 6.5. Paths in function space for N =3 (S2 electronic sphere) that map onto closed
loops in configuration space. Π2 paths (from A to A′, indicated by the solid and open
circles, respectively) that involve a sign change and hence GP effect. With ξ12 =0 one gets:
|Ψ1〉= |Ex〉, |Ψ2〉=cos ξ23|Ey〉+ sin ξ23|Ez〉, and |Ψ3〉=− sin ξ23|Ey〉+ cos ξ23|Ez〉. In turn, for
ξ12 =π: |Ψ1〉=−|Ex〉, |Ψ2〉=− cos ξ23|Ey〉− sin ξ23|Ez〉, and |Ψ3〉=− sin ξ23|Ey〉+cos ξ23|Ez〉.
For ξ12 =0 and π, all |Ψi〉 change sign upon the transformation ξ23→ξ23+π, but |Ψ2〉 does
so by evolving from A to A′ when ξ12 = 0 and returning to A when ξ12 = π. Thus, |Ψ2〉
leads to a Δ-type path (simply connected) under î3 by not manifesting GP. Also shown
is a simply connected path of type Π1.

as (
Ψ1(rn; ξz)
Ψ2(rn; ξz)

)
=

[
cos ξz(rn) sin ξz(rn)
− sin ξz(rn) cos ξz(rn)

](
ψ1

ψ2

)
(6.67)

where ξz = αz/2 is the mixing angle. Thus, 〈Ψ1|∇Ψ2〉 = −〈Ψ2|∇Ψ1〉 = ∇ξz .

Defining [40]

Ψ̃ =
1√
2
(Ψ1 + ιΨ2) (6.68)

it is now easy to show that 〈Ψ̃|∇Ψ̃〉 = ι〈Ψ1|∇Ψ2〉. Similarly, it follows that

〈Ψ̃|∇Ψ̃〉= ι∇A(rn). It then follows that ∇A(rn)=∇ξz(rn), a result corroborating

the statement already made that the GP is (up to a constant term that has no

physical implications) identical to the mixing angle and which will be of use

again at a later stage.
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Consider now the equations of nuclear motion for the title 2D coupled prob-

lem7:[
−
–h2

2μ

(∇2+〈Ψ1|∇2Ψ1〉
)
+V1−E

]
Φ1 =

–h2

2μ

[〈Ψ1|∇2Ψ2〉+2〈Ψ1|∇Ψ2〉 · ∇
]
Φ2

(6.69)[
−
–h2

2μ

(∇2+〈Ψ2|∇2Ψ2〉
)
+V2−E

]
Φ2 =

–h2

2μ

[〈Ψ2|∇2Ψ1〉+2〈Ψ2|∇Ψ1〉 · ∇
]
Φ1

(6.70)

By writing [100] the complex nuclear wave function

Φ̃ =
1√
2
(Φ1 + ιΦ2) (6.71)

and using the NACTs given above as well as 〈∇Ψi|∇Ψi〉 = [∇ξz(rn)]2,

〈∇Ψi|∇Ψj〉=0, 〈Ψi|∇2Ψj〉=∇2ξz(rn), and 〈Ψj |∇2Ψi〉=−∇2ξz(rn), yields

{
−
–h2

2μ

[∇2−(∇ξz)
2]+Ei−E

}
Φ̃+

ι√
2

(
Vj−Vi

)
Φj =

− ι
–h2

2μ

(∇2ξz+2∇ξz ·∇
)
Φ̃ i, j=1, 2 (6.72)

Near the crossing seam, the term
(
Vj − Vi

)
should be negligibly small, reducing

to [40]{
−
–h2

2μ

[∇2 − (∇ξz)
2] + V − E

}
Φ̃ = −ι

–h2

2μ

(∇2ξz + 2∇ξz · ∇
)
Φ̃ (6.73)

a single (uncoupled) equation that should be accurate there both for V = V1

and V2. Note that the above differs from the Baer-Englman [37,130] treatment in

that Eq. (6.73) is valid for both sheets. Furthermore, unlike the latter, it uses the

mixing angle ξz(R) and no assumption is made that the upper sheet is closed

to the dynamics. Of course, the BO approximation is recovered for derivative

coupling constant or zero.

The implications of the GP in the dynamics can now be found by comparing

the results obtained by solving the dynamics of nuclear motion in Eq. (6.73)

with inclusion of GP and without it. Such studies have been carried out for a

wealth of systems [18, 39, 110, 111, 115, 131–135], with the reader being referred

7For clarity, we return to the explicit use of –h, and reduced mass.
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to the original papers for details. Suffice it to say that the nuclear SE including

GP may be written as ĤΦ̃ = EΦ̃, where Ĥ = Ĥ0 + ιĤ1. Explicitly, it assumes in

hyperspherical coordinates [36] the form

Ĥ0 =−
–h2

2μ

{
∂2

∂ρ2
+
16
ρ2

[
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1

4 sin2(θ/2)

∂2

∂φ2

]}

+
Ĵ 2 − Ĵ 2z

μρ2 cos2(θ/2)
+
Ĵ 2z + 4i–hĴz cos(θ/2)(∂/∂φ)

2μρ2 sin2(θ/2)
+
15–h2

8μρ2

+
sin(θ/2)

μρ2 cos2(θ/2)
1
2

[
Ĵ 2+ + Ĵ 2−

]
+ V (ρ, θ,φ) +

–h2

2μ

[∇ξz(ρ, θ,φ)
]2

Ĥ1 =−
–h2

2μ

[∇2ξz(ρ, θ,φ) + 2∇ξz(ρ, θ,φ) · ∇
]

with all symbols having their usual meaning. Note that singularities may arise

at ρ = 0 and θ = 0, which requires special care. Note especially that the gener-

alized BO approximation requires the gradient of GP rather than the GP itself.

Early applications of the theory are reviewed in Ref. 18, to where the reader is

addressed for details.

Consider now Eq. (6.67) written in matrix form as

Ψ(rn; ξz) = R2(ξz)ψ (6.74)

which shows that a vector state will define in function space a point on the

circle of unit radius centered at its origin. A rotation ξz → ξz +π characterized

by the operator R̂2 will then lead to R2(ξz +π) =−R2(ξz). Since both adiabatic

electronic wave vectors Ψ1 and Ψ2 change sign upon acting with R̂2, the result

mimics the one obtained for a closed loop in v-space (αz → αz +2π) or the

topological impossibility of unpinning the electronic circle from an enclosed

point of degeneracy. As seen from Figure 6.6 (cf Figure 6.5 for a realistic system),

the JTM forms a 1D trough in the lower sheet of the E ⊗ e problem [11, 13], so-

called the ‘Mexican hat’, with the motion along the distortion coordinate αz

being equivalent to the concerted motion of each atom around a circle [i.e.,

pseudo-rotation in Figure 6.2], The GP effect for systems with an orbital doublet

degeneracy may then be stated as [19, 45, 48]: an electronically adiabatic state

that experiences the GP effect will change sign after completing a loop around the

110



Figure 6.6. The “Mexican hat”. Besides the diagonal kinetic energy matrix, the linear
JT Hamiltonian is characterized in the

{
QEx ,QEy

}
phase space by the potential matrix

1
2ω

2
E

(
Q2

Ex + Q2
Ey

)
σ0 + VE

(
QExσx + QEyσy

)
, where σ0 =

[
1 0
0 1

]
, σx =

[
1 0
0 −1

]
, and

σy =

[
0 ι
−ι 0

]
are Pauli matrices. In turn, ωE characterizes the two harmonic oscillators

and VE the strength of the linear JT interaction. [10–12] Shown by the white line is the
JTM, which corresponds to a circle of radius ρ= (Q2

Ex + Q2
Ey )

1/2 centered at the vertex of
the diabolo, ρ=0, with an energy of −V 2

E /2ω
2.

conical intersection in v-space or, equivalently, upon use of the rotation operator

R̂2 in f -space. Although this may appear a trivial result since a path connecting

a point to its antipodal must lead to a sign change of |Ψ1〉 and |Ψ2〉, it is not so
when N ≥3.

6.6.2 T ⊗ (e⊕ t2)

Consider now the threefold electronic degeneracy in T ⊗ (e ⊕ t2). The JT

Hamiltonian including linear vibronic coupling has now Lie group symmetry

SO(3) [11], which implies dimension 3 and hence 3 Lie group parameters. Since

a norm-preserving adiabatic electronic wave vector on the electronic sphere S2

can be unambiguously characterized in terms of two angles, there is freedom

of choice for selecting the latter out of the three coordinates in SO(3). The

remaining one can, however, be sampled by considering all three two-angle

sets. By assigning a 3 × 3 unitary planar rotation matrix to each of the chosen
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coordinates (ξ12 and ξ23), the full rotation matrix assumes the form

R3 = ρ12(ξ12)ρ23(ξ23) (6.75)

where
[
ρnm

]
nn

=
[
ρnm

]
mm

=cos ξnm, and
[
ρnm

]
nm

=− [
ρnm

]
mn

=sin ξnm; all other

entries satisfy
[
ρnm

]
ij
=δij . As in the E⊗e problem, the electronic adiabatic wave

vectors will now be given by the rows of the following R3 matrix:⎛
⎝ Ψ1(rn; ξ23, ξ12)

Ψ2(rn; ξ23, ξ12)
Ψ3(rn; ξ23, ξ12)

⎞
⎠=

⎡
⎣ cos ξ12 sin ξ12 cos ξ23 sin ξ12 sin ξ23
− sin ξ12 cos ξ12 cos ξ23 cos ξ12 sin ξ23

0 − sin ξ23 cos ξ23

⎤
⎦
⎛
⎝ ψ1

ψ2

ψ3

⎞
⎠

(6.76)

where ξ12(rn) is the first mixing angle (describes the mixing of ψ1 and ψ2 to

form an intermediate adiabatic state Ψ12), and ξ23(rn) is the second mixing angle

(describes the mixing of Ψ12 and ψ3). Upon use of the matrix R3 associated to

the double-rotation in f -space defined by ξ12→π−ξ12 and ξ23→ξ23+π, Ψ1 and

Ψ3 are seen to be the only eigenstates that change sign. Note that the two angles

define normwise the degeneracy locus of an adiabatic state, being equivalent to

the pseudo-rotational angles in v-space.

Figure 6.5 shows that a path connecting a point to its antipodal in f -space

leads to a manifestation of the GP effect for Ψ1 and Ψ3 but not Ψ2. Following

Ref 48, this can be understood as follows. Consider the angle ξ12 fixed at ξ12 =0

such that the point A and its antipodal A′ lie on the equator of the electronic

sphere, with the path Π2 passing on its north pole. Thus, Ψ1 = ψ1, Ψ2 =

cos ξ23ψ2 + sin ξ23ψ3, and Ψ3 = − sin ξ23ψ2 + cos ξ23ψ3. For ξ12 fixed at 0, Ψ2 and

Ψ3 will change sign upon the transformation ξ23 → ξ23 + π. By considering now

ξ12 = π, one obtains Ψ1 → −Ψ1 and Ψ2 = − cos ξ23ψ2 − sin ξ23ψ3 = cos(ξ23 +

π)ψ2 + sin(ξ23 + π)ψ3 while Ψ3 shows the same dependence on ξ23 as for ξ12 =0.

Thus, upon the transformation ξ23→ ξ23 +π, Ψ2 evolves from A to A′ (changes

sign) when ξ12 = 0, but closes the loop (i.e., changes sign again) by returning

to A when ξ12 = π. The notable feature is then the cancelation of signs that

occurs when both ξ12 and ξ23 vary simultaneously. Equivalently, Ψ2 keeps its

sign unchanged upon acting with the matrix R3. The same conclusions can be

extracted irrespectively of the initial and final values of ξ12 provided that they
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differ by π. The important observation is the cancelation of signs in Ψ2 owing to

the fact that the path from A to A′ becomes a closed one (i.e., Δ-type). Similar

results are obtained irrespective of the chosen angles, provided that the matrices

in Eq. (6.75) form an ordered sequence yielding physical solutions: under the

action of R̂3, an arbitrary wave vector must either change sign or remain sign

unchanged. State labeling in Eq. (6.76) is also arbitrary showing that only one

pair of adiabatic electronic states changes sign.

The above results indicate that the three branches of the three-valued PES

and the electronic S2-sphere show a different connectedness. While the latter

is simply connected (any closed path or loop can be smoothly contracted to a

point), the former may well have ’holes’ in their topologies and hence be multiply

connected. Thus, besides trivial paths of class Π1, there may be nontrivial ones

of Π2 type. In fact, these two classes of paths seem to be topologically distinct in

states Ψ1 and Ψ3 (i.e., loops belonging to class Π2 can never evolve smoothly to

Π1-type ones), thence explaining their multiple-connectedness property. Thus,

our predictions agree with previous findings [28, 35] that show the multiple-

connectedness property of the JTM in the linear T⊗h problem. Instead, for state

Ψ2, the Π2 path evolves to one of class Π1 by becoming of theΔ-type, and hence

smoothly contractable to a point: no GP effect is observed. In other words, there

is a point Qd in configuration space where the mapping is degenerate: it links

Qd not just to a pair of opposite points ±Ψ2(Qd) on the electronic sphere but

to the whole circle of linear combinations cos ξ23(Qd)ψ2+sin ξ23(Qd)ψ3.

Similarly to the E ⊗ e system, θ = 2ξ12 and φ = 2ξ23 define pseudo-rotational

angles with the lowest adiabatic PES displaying a continuum of equipotential

minima points that form a 2D trough on the 5D surface. In terms of ξ12 and ξ13

distortion angles, the motion along the bottom of the JTM can then be viewed

as an internal free rotation of quadrupole distortions of a sphere where the

direction of the distortion gradually changes along the (ξ12, ξ13) directions [12,13];

Figure 6.7. The presence/absence of GP effect manifests then as a property

inherent to sign change of the adiabatic electronic wave vectors upon action of

R̂3 in f -space, thus corroborating the observation [35] that GP in the T ⊗ (e⊕ t2)
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ξ13

ξ12

Figure 6.7. Internal free rotation of quadrupole distortions of a sphere where the direction
of the distortion gradually changes along the (ξ12, ξ13) directions.

system is tied to the occurrence of a ground-state triplet (see Ref. 136).

6.6.3 High electronic orbital degeneracies

Fourfold and fivefold orbital degenerate electronic terms arise in icosahedral

systems, with typical problems being [12] G ⊗ (g⊕h) and H ⊗ (g⊕ 2h), respect-

ively. These will be briefly surveyed in this section. A parametrization of the R̂N

(N =4, 5) operator is then required, with two convenient and independent ways

being available to parametrize N dimensions with angular coordinates [137]. The

one followed here, which is most frequently encountered in physical applica-

tions, is the polar parametrization [19,45,46,128,137]. Such N -dimensional polar

(also known as hyperspherical polar) coordinates were used by Louck [128] in

pioneering work on the generalized orbital angular momentum for the N -fold

degenerate harmonic oscillator, although a parametrization with biharmonic co-

ordinates has also been used [46]. The rotation matrix in O(N ) assumes then the

form:

RN = ρ12(ξ12)ρ23(ξ23)ρ34(ξ34) · · ·ρN−1,N (ξN−1,N ) (6.77)
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thence showing a dependence on (N − 1) mixing angles.

Consider now the the G ⊗ (g⊕h) problem whose Lie symmetry of the linear

JT Hamiltonian is [11] SO(4), thus having six Lie-group parameters. A norm-

preserving adiabatic electronic vector for this problem will then be defined by

three mixing angles with the rotation matrix R4 given by the product of three 4×4
independent unitary planar rotation matrices ρij . Any 3 mixing angles [chosen

from the 6 available parameters in SO(4)] will then be suitable to specify an

adiabatic wave vector, provided that under R̂4 it either changes sign or remains

sign unchanged. Thus,

R4 =

⎡
⎢⎢⎣

c12 s12c23 s12s23c34 s12s23s34
−s12 c12c23 c12s23c34 c12s23s34
0 −s23 c23c34 c23s34
0 0 −s34 c34

⎤
⎥⎥⎦ (6.78)

where cij = cos ξij , sij = sin ξij , and the angles are interpreted in a way similar

to previous cases. being associated to pseudo-rotational angular coordinates in

v-space. The action of R̂4 in f -space will then consist of the following rotations:

ξ12→ π−ξ12, ξ23→ π−ξ23, and ξ34→ ξ34 +π. Upon acting with R̂4, Ψ1 and Ψ4

are seen to change sign while Ψ2 and Ψ3 remain sign-unchanged. Following

Ref. 48, this may be rationalized by fixing ξ12 and ξ34 at specific values. If one

considers ξ12 =0→π at ξ34 =π/2, one gets for theΨ2 components: (0, c23, 0, s23)→
(0,−c23, 0,−s23). The situation is then analogous to that of the N = 3 problem:

both before and after the transformation ξ12→π−ξ12, Ψ2 is found to change sign

but through complementary paths that close the loop and hence lead to sign

cancelation as the final result (topologically, one has a path of Δ type). A similar

observation applies toΨ3 when ξ23 =0→π: (0, 0, c34, s34)→ (0, 0,−c34,−s34). The
above explains why Ψ2 and Ψ3 keep their signs unchanged under R̂4 in f -space.

A situation where only two states change sign out of four belongs to case

(2, 2); the first digit stands for the number of sign changes, the other for that of no

sign changes (also referred to as [44] JT and RT cases, respectively), where also

the cases (4, 0) and (0, 4) are observed. However, it finds no correspondence

in the model Hamiltonian work of Ref. 43 where only cases (4, 0) and (0, 4)

are found. If 2ξ12, 2ξ23 and 2ξ34 are viewed as pseudo-rotation angles in the
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9D space of the g and h vibrations ([G2] = A+G+H , with an equal coupling

assumed for the G and H modes), one obtains [46, 138] a 3D JTM extending

over the 9D coordinate space, a situation analogous to the one in 5D for the

cubic quadruplet terms [Γ8 ⊗ (e ⊕ t2) problem] [11]. Of course, it cannot be

anticipated whether a warping of the adiabatic PESs occurs as this depends on

the JT matrix. In fact, when the dimension of the normal-mode space is smaller

than that of the function space, the PES is usually characterized by some amount

of corrugation [13]. Our theory can then predict how many states manifest GP

but not its presence/absence in JTM.

We now turn to fivefold electronic degeneracies, the highest known in mo-

lecular symmetry groups (except for axial ones, not interesting in JT theory),

which arise in fullerenes like C60 via the icosahedral H ⊗ (g ⊕ 2h) system [12].

Belonging to the symmetry group [11] SO(5), the analysis for the coupling of a

fivefold degenerate electronic state of H symmetry and a 9D space of nuclear

distortions (g + h) leads to the prediction of a 4D JTM trough in the 9D PES.

This is due to the fact that a norm-preserving eigenvector will show rotational

invariance to changes in its direction related to an equipotential displacement

on the bottom of the trough. Depending on a single-mode splitting parameter,

two coupling regimes favoring either pentagonal or trigonal minima may be ob-

served. For a nonzero splitting, the surface of the trough becomes warped with

the appearance of minima of D3d and D5d symmetries (Refs. 12,47, and therein).

In line with the other JT problems, use will then be made of the rotation

matrix

R5 =

⎡
⎢⎢⎢⎢⎣

c12 s12c23 s12s23c34 s12s23s34c45 s12s23s34s45
−s12 c12c23 c12s23c34 c12s23s34c45 c12s23s34s45
0 −s23 c23c34 c23s34c45 c23s34s45
0 0 −s34 c34c45 c34s45
0 0 0 −s45 c45

⎤
⎥⎥⎥⎥⎦ (6.79)

where the angles ξij are defined as above. In this case too, only two adiabatic

sheets of the fivefold manifold are predicted to manifest GP: case (2, 3). Such a

result seem at first to contradict existing evidence on the nature of the dynamic

ground state adiabatic PES, which has been examined in detail [47, 139, 140].
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In fact, the JT effect of the icosahedral quintuplet term in the trigonal regime

shows an intriguing crossover of dynamic states from a degenerate to a singlet

state, with coupling strength showing an apparent correlation with the phase of

the tunneling paths through such minima. At stronger coupling the dominant

tunneling process is believed to consist of closed loops spanning cycles of five

wells, with a vanishing GP associated with these loops. Moate et al. [139] and

Manini and De Los Rios [140] studied the H ⊗h problem and have given distinct

topological explanations for the absence of GP in such loops by considering

their projection in a plane formed by normals to a pentagonal symmetry axis

which permutes the five wells in a cyclic fashion. A connection between such

topological explanations has been given by Lijnen and Ceulemans [47], who have

scanned the topology of the full coordinate space using a net of triangular cross

sections between the ten D3d minima. By expressing the GP of every loop on the

PES in terms of such 2D triangular cross sections, they have found [47] that the

absence of GP for the cycles containing five trigonal wells originates from two

seams of conical intersections going through these cycles. Suffice it to note that

the absence of GP effect on the adiabatic ground state PES does not invalidate

our prediction that only two sheets of the fivefold electronic manifold manifest

GP. Of course, one may argue that, if both a conical and a tangential contact

occur, one expects the former to lie lower in energy due to its nonzero slope. Yet,

one can contest that the energy-ordering criterion is applicable only to adiabatic

states, which need not necessarily be invoked here. In other words, a given

diabatic state may be the dominant contribution to the adiabatic ground or to

an adiabatic excited state depending on the region of configuration space under

analysis. The above considerations seem therefore to rule out a prediction [43,44]

of sign change in all states of the fivefold manifold, case (5, 0). As Table 6.1

shows the Baer [44] theory predicts cases (3, 2) and (1, 4), but not (0, 5), with

similar results holding for the theory of Manolopoulos and Child [43]. Thus,

none of the existing theories (including our own [48]) predicts the case (0, 5).

Clearly, this is an issue that requires further analysis.
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Table 6.1. Allowed adiabatic sign-changes at a N -fold electronic orbital degeneracy.

N MCa) Bb) this work

2 −− −− −−
3 +++ +++ n.o.c)

−+− −+− −+−
4 ++++ ++++ n.o.

−−−− −−−− n.o.
n.o. −++− −++−

5 −−−−− −−−−− n.o.
n.o. n.o. −+++−

−−−++ −−−++ n.o.
−++++ −++++ n.o.

6 −−−−−− −−−−−− n.o.
n.o. −++++− −++++−
n.o. −−−−++ n.o.

++−−−− ++++++ n.o.

a) D.E. Manolopolous & M.S. Child, Phys. Rev. Lett., 82, 2223 (1999).
b) M. Baer, Chem. Phys. Lett., 322, 520 (2000).
c) Not observed.

6.7 Is Longuet-Higgins theorem valid for any Jahn-Teller degeneracy?

It is apparent from section 6.3 that the adiabatic propagation of an elec-

tronic wave vector around a N -fold degeneracy in v-space can be associated

to a (N−1)-angle pseudo-rotation or to a multiple-rotation in the f -space with

the same dimensionality. In many cases, the rotation operator R̂N−1 yields a Π2

path in f -space. For the twofold and threefold linear JT problems, our predic-

tions are found to agree with those obtained from the traditional loop analysis

in v-space [20, 21, 35, 136]. Not unexpectedly, perhaps, our predictions [48] do

not always coincide with the ones obtained from other treatments [43, 44], nor

do the latter agree amongst themselves. This may be attributed to the specific

symmetry requirements involved, thus eliminating occurrences that might oth-

erwise happen in their absence. In fact, a (2,N−2) sign-change is predicted

irrespective of N : only two electronic wave vectors change sign. With N =4, the
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Figure 6.8. Schematic coalescence of two twofold electronic degeneracies to yield a
fourfold one. For clarity, a pair of states where the sign change is not observed upon
completion of a loop in v-space is indicated by two paraboloids, one up and one down,
that touch tangentially (the point of contact is not necessarily an extremum). Conversely,
those that change sign are indicated by a diabolo. If the two degeneracies were both
of the conical type, the first LH theorem would imply that none of the four states could
change sign upon adiabatic transportation of the wave function over a closed loop that
encircles the two coalescing degeneracy points as this would imply an even number of
conical intersections. Stated differently, only if one of the N =2 coalescing degeneracies
is conical can yield a single pair of sign changing states.

nJT JT N = 4

results from our theory then agree with one of the reported Baer’s [44] solutions,

but disagree with his results and the ones of Manolopoulos and Child [43] in not

finding the (4, 0) and (0, 4) cases.

An attempt to rationalize the above discrepancies is made in Figure 6.8,

where a (high-N ) fold degeneracy is viewed as the coalescence of two (low-

N ) fold ones, specialized to N = 4. The approach [48] stands therefore on the

assumption that both the low- and (high-N )-fold degeneracies can occur along

the same locus, which should generally be valid on symmetry grounds. The

argument is then akin to that of viewing, e.g., an e ⊕ t2 problem as a fivefold

degenerate vibration for identical coupling parameters. Note that a pair of states

where a sign change is not observed upon completion of a loop in v-space

119



(a Δ-path) is indicated by two paraboloids, one up and one down, touching

tangentially (not necessarily an extremum, and hence should not be confused

with a pseudo-JT situation [11, 13]). Conversely, the ones that change sign (Π2-

type) are indicated by a diabolo. Clearly, the LH theorem imposes that only one

of the N =2 coalescing degeneracies may be conical leading to a single pair of

sign changing states.

The question then arises: since an odd number of two-state conical intersec-

tions is involved in a sixfold degeneracy, does the argumentation of the previous

paragraph imply the existence of the (0, 6) case? As sketched in Figure 6.9, the

answer will be negative. In fact, the N = 6 case may also be viewed as a co-

alescence of N = 4 and N = 2 degeneracies. Because the LH theorem has been

shown to apply to N = 4, only one of those coalescing degeneracies can be of

the conical type, leading again to just one pair of states subject to the GP effect.

Since there is no reason of principle for one of the above two schemes to prevail

over the other, the maximum number of sign-changing states common to both

interpretations is two, i.e., the (2, 4) case. As Table 6.1 shows Baer’s theory [44]

additionally predicts the cases (6, 0), (4, 2) and (0, 6), while the only predictions

from the Manolopoulos-Child [43] theory are (4, 2) and (0, 6). By an extension of

the above argument, one is led to conclude that only one pair of sign changing

states is observable for any arbitrary N -fold degeneracy [19, 45, 48]. Note that

the odd-N state cases pose no problem, since only a single sign-unchanging

state needs to be added to the closest even-N state problem. Thus, the in-

triguing question urges of whether the LH theorem applies to arbitrary N -fold

degeneracies.

To get additional physical insight into the above question, consider a JT

problem where more than a pair of adiabatic states is assumed to change sign

upon parallel transportation along a closed path around the locus of degener-

acy. For example, assume that the case (4, 0) behaves that way, with Ψi (i=1−4)
denoting such states. Since they are degenerate in the vicinity of the seam, a

solution of the SE would also be Ψ =
∑N

i=1 CiΨi. Recalling now that opposing

wave vectors in a ray represent a unique physical state [129], all Ψi must change
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Figure 6.9.

N = 6

Schematic coalescence of low-order degeneracies in the configuration space
of the JT system to form a sixfold electronic degeneracy.
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sign simultaneously during the parallel transportation of Ψ along the loop. Since

this must be further warranted for any loop, only by accident could it happen

unless all pairs are identical. Stated differently, only one pair of adiabatic states

can change sign. The above can be summarized in the following [48] (exten-

ded Longuet-Higgins) Theorem: No N-fold linear JT degeneracy can have more

than one pair of adiabatic electronic states that change sign upon being paral-

lel transported in v-space along a loop that encircles the degeneracy point. The

method of reductio ad absurdum will be employed for the demonstration. As-

sume then that M such pairs show a sign change. Clearly, M cannot be even an

even number as this would imply a loop encircling an even number of twofold

degeneracies (conical intersections), thence violating the first LH theorem. If M

is odd, then let us isolate arbitrarily one pair of states that shows such a sign

change. The remaining M−1 pairs would then form a manifold with an even

number of twofold conical intersections. This cannot be allowed since, as noted

above, it would violate the first LH theorem. Thus, none of the 2M−2 states can

change sign upon completing a loop around the crossing point: only one pair

(the isolated one) can show such a sign change. QED

6.8 Does a general relation between the geometrical phase and mixing

angles exist?

For the 2D Hilbert space, we have shown that by writing a single complex

wave function in terms of the two real ones, Eq. (6.68), a relation can be obtained

between the geometrical phase and the mixing angle. Specifically, the angle

γ(rn) = γ̃/2 that diagonalizes the potential matrix (mixing angle) has been shown

to be identical to ATD angle, α(rn) [41], and GP, A(rn) [40], at least up to a

constant term that has no physical significance. The process of building the

single-valued complex function for the above O(2) case suggests therefore the

following generalized expression for the O(N ) case:

Ψ̃ =
1√
N

N∑
n=1

exp

[
2(n− 1)πι

N

]
Ψn (6.80)
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Recalling now that

Ψ̃ = exp[ιA(rn)]Ψ (6.81)

one obtains upon use of Eq. (6.77) and evaluation of 〈Ψ̃|∇Ψ̃〉,

∇A(rn) = − 1√
N

[
∇ξ12 +

N−2∑
n=1

cn,n+1∇ξn+1,n+2 −
N−2∏
n=1

sn,n+1∇ξN−1,N

]
(6.82)

Specializing for the N =3 case, one gets

∇A(R) = − 1√
3

[∇ξ12 + (cos ξ12 − sin ξ12)∇ξ23
]

(6.83)

which provides an explicit relation between the GP angle and the mixing angles

ξ12(rn) and ξ23(rn). Corresponding expressions can be obtained for other Lie

groups, in all cases involving ∇A(R) and the gradient of each of the N − 1 mix-

ing angles. The problem lies therefore on the capability to reduce the Hamilto-

nian to a single SE as done on section 6.6.1 for the e ⊗ E problem. This would

not only simplify considerably the generalized BO formulation recently sug-

gested [141, 142] for the three-state problem but provide a generalization to

higher-degeneracies. In this regard, the most convenient formulation appears to

be the one of Eq. (6.37), where the nuclear wave functions are treated as real

and a vector potential appears in the Hamiltonian. In this case, ∇A(R) can be

replaced there to solve the dynamics problem in terms of the mixing angles.

Alternatively, one may think of following the argumentation above and treat

a N -fold degeneracy as a succession of

(
N
2

)
twofold degeneracies solved

step-by-step as done by Longuet-Higgins [i.e., via repeated use of hybrid wave

functions in Eq. (6.68)]. In this case the answer to the above question should

be also affirmative. Research along these lines is currently in progress in our

Group.

6.9 Concluding remarks

We have given a perspective on the BO approximation and several related

issues: separation of the electronic and nuclear motions, coupled-channel treat-

ment, scaling properties, validity, and diabatic states. Furthermore, considerable
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emphasis has been put on the need for its generalization such as to account for

the topological implications in systems with degeneracies of the conical type,

due to the separation of the electronic (fast) and nuclear (slow) degrees of free-

dom. Without hoping for convenience at a balanced coverage of the topic, the

analysis has been carried by specializing on the work developed in recent years

by the author and his collaborators while providing references to other published

material. Beyond well known studies on two-fold degeneracies, recent devel-

opments on the theme of high electronic degeneracies occurring for Jahn-Teller

systems have been also surveyed. In particular, a theory recently proposed by

the author [19, 45, 48] that avoids altogether the solution of the dynamics prob-

lem by making instead use of symmetry invariants has been reviewed in some

detail. How to bring it into the realm of quantum dynamics by generalizing the

procedure utilized to decouple the two-state problem into two one-state ones

with the help of GP is a promising issue that warrants a future reanalysis of this

topic.

Note added in proof

After completing this work, Generalized Born-Oppenheimer equations in-

cluding the geometrical phase effect have been derived for three- and four-fold

electronic manifolds in Jahn-Teller systems near the degeneracy seam [143]. The

theory shows unprecedented simplicity while being readily extendable to N -

fold systems of arbitrary dimension. In addition, an application to a model

threefold system has been reported [143], and the results compared with Born-

Oppenheimer (geometrical phase ignored), extended Born-Oppenheimer [141],

and coupled three-state calculations [144].
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