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Abstract 

This study aims to estimate wildfire occurrence in two representative Spanish regions with different 

territorial, social and environmental characteristics as well as fire history; Zamora and Madrid. Land-Use 

Land Cover (LULC) interfaces derived from ESA Climate Change Iniciative-Land Cover (CCI-LC) 2005 

(covering 2003-2007 period at 300m resolution) were used as indirect indicator of socio-economic drivers 

associated with human-caused wildfire ignition sources. Three general interfaces were used; forest-

agricultural interface (FAI), grassland-forest interface (GFI) and wildland urban interface (WUI), as well as 

other more specific ones derived from a disaggregated LULC legend. A set of biophysical variables including 

orientation, monthly precipitation, temperature (mean, minimum and maximum) as well as live fuel moisture 

content (FMC) were also considered in the model. Monthly precipitation and temperature were obtained from 

a regional climate dataset developed for the study sites by the University of Cantabria (Spain) at 1km2 spatial 

resolution while FMC were calculated from MODIS images following Yebra et al. (2018) methodology. 

Orientation was obtained from the Digital Terrain Model at 25m available for Spain at the Spanish National 

Geographic Institute (CNIG). 

Generalized Linear Models (GLMs) were used to obtain four sub-models to estimate wildfire occurrence 

in the two study regions during the 2000-2010 period. Two models included only LULC interfaces at two 

different disaggregation levels, and the other two models also included biophysical drivers. Results showed 

that disaggregated interfaces helped to improve the spatial characterization of probability of occurence. FAI 

was the LULC general interface that contributed the most to the models. Biophysical drivers had larger 

contribution to the models than the interfaces but the later still had importance explaining the spatial 

distribution of the fire occurrence probability. The accuracy of the models improved when biophysical 

variables were included achieving a sensitivity of~42% and omission errors of ~58% in Zamora and ~6% 

and 90%, respectively in Madrid. The results for Madrid were less accurate mainly due to the small number 

of fire events to fit the models. Future works will deal with modeling in areas with small but of importance 

number of fires as in this last site. This study indicates that the human component of wildfires represented by 

LULC interfaces and its disaggregation can be integrated into wildfire occurrence estimation.  

 
Keywords: CCI-Land Cover, LULC interfaces, MODIS Hotspots, wildfires 

 

 

Reported changes in the use of land and in climate are affecting the fire cycle (Pausas and 

Fernández-Muñoz 2012) increasing the frequency and severity of wildland fires (Moreno et al. 2013) 

and leading to threats to the ecosystem stability, the provision of services, habitat conservation as well 

as properties and human lives. Most of these fires are human-caused so an effort is necessary to identify 

and monitor fire risk associated to human activity. Previous works to predict wildfire occurrence have 

considered different types of factors that represent the human activities that can lead to the ignition of 
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a fire i.e. roads, electric lines, population, natural protected areas (Martínez et al. 2009) (Rodrigues 

2014) (Vilar et al. 2016b). Among all the considered factors, the contact areas between the forest and 

other land cover (the so-called interfaces) have been also included because of the high implication for 

the security of the people living close to these areas as in the Wildland Urban Interface (WUI). 

However, in these contact areas human activities cannot only suffer the effects but also to lead to fire 

ignitions either by accident, negligence or deliberate actions (pasture or agricultural burnings, 

recreational activities close to urban areas, etc.). Consequently, Land Use Land Cover (LULC) 

interfaces can be considered as a proxy to human activities associated to potential sources of wildfires 

ignition (Gallardo et al. 2015) (Vilar et al. 2016a). In this work we consider different LULC interfaces 

at various thematic disaggregation levels in combination with other biophysical parameters associated 

to wildfire ignition risk, to estimate fire occurrence at a regional scale. The study sites are two Spanish 

provinces, Zamora and Madrid, because of their differences in terms of territorial characteristics, 

LULC and fire history. Generalized Linear Models (GLMs) were applied for the period 2000-2010 

and four sub-models at 1km2 grid cell resolution were calculated for each province by using (1) LULC 

interfaces (general and specific) and (2) a combination of LULC interfaces and biophysical variables 

(precipitation, temperature and Fuel Moisture Content-FMC-). 

 

 

 

The study sites are two Spanish provinces, Zamora and Madrid (Figure 1). The two regions are 

quite similar in size (Zamora area is ~10,500 km2 and Madrid ~8,400 km2) and are dominated by 

Mediterranean continental climate (mean temperature 12-14ºC and 400-1000 mm annual 

precipitation (AEMET 2011)). However, both regions have substantial differences in population 

density (17 hab/km2 in Zamora and 800 hab/km2 in Madrid) (INE 2018). Regarding natural 

vegetation forest, mainly evergreen occupy the 25% of the total area in both provinces. Important 

zones are covered by shrublands in Zamora, and only less than the 2% is covered by grassland, 

while Madrid is mainly dominate by mixed shrubland-trees, deciduous forest and grasslands, with 

the latest representing approximately a 14% of the surface (CCI-LC 2010).  

 
Figure 1 - Location of the study sites and their corresponding reclassified Land Cover categories from ESA Climate 

Change Iniciative-Land Cover (CCI-LC) and obtained ignition points 2001-2010 (MODIS Burned Area MCD64A1 

and MODIS Hotspots products combination) 

Agricultural areas cover ~64% and ~40% of the territory in Zamora and Madrid respectively. Urban 

areas represent ~9% of the territory in Madrid while are really scarce in Zamora (<1%). Concerning 

wildfires ~5,200 events happened in Zamora between 2001 and 2010 period, burning 14,000 ha. 1,000 

fire events affected 25,000 ha in Madrid. Deliberately caused wildfires are more than 75% in Zamora 
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while in Madrid accidents cause the 22% of the total wildfires being ~50% classified as unknown 

causes (Cubo María et al. 2012). 

 

 

Fire data used for this work was the result of combining two data sources, (1) MODIS Terra and 

Aqua Burned Area (BA) MCD64A1 product, which is a global and monthly gridded 500 m resolution 

product (Giglio and Justice 2015) and (2) MODIS Hotspots (HS) from MCD14DL and the Visible 

Infrared Imaging Radiometer Suite (VIIIRS) 375 m (VNP14IMGTDL_NRT) (Giglio L et al. 2003). 

BA was downloaded from LP-DAAC NASA Land Products and Services 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd64a1_v006) and HS 

from Active Fire Data (https://firms.modaps.eosdis.nasa.gov/) for the period 2000-2010. The BA 

polygons with less than 50 m distance between them were assumed to be the same fire event and 

therefore were grouped. Afterwards, the pixel with the earliest date was selected from the group and 

considered the ignition point. Spatial coincidence between the HS and the BA was checked to confirm 

the location of the fire ignition point. All the HS detected at the same date and less than 1,500 m 

distance from the BA polygons  were considered to belong to the same fire (Hantson et al. 2013; Vilar 

et al. 2015). Also, groups of HS with no BA associated but with a distance less than 1,500 m among 

them were assumed to be another fire event. Afterwards those selected BA pixel or HS were placed 

within the 1km2 cell grid of reference. The response variable was finally established as the presence 

or absence of fires in the period 2000-2010 in each 1km2 grid cell.  

 

Several LULC Interfaces and biophysical variables were considered independent vatiables of the 

model (Table 2). LULC interfaces were derived from ESA CCI LC products (Defourny et al. 2016). 

The main source of input Earth Observation (EO) data for the global LC maps is the full archive (2003-

2012) of MERIS instrument (Bontemps et al. 2015) at 300 m resolution. To obtain the LULC interfaces 

the original CCI-LC 2005 epoch (2003-2007 period) legend was reclassified as showed in Table 2. 

The three general interfaces were defined as follows forest (class 2)- agricultural (class 1) interface 

(FAI), forest (class 2)- grassland (class 3) interface (FGI) and wildland (class 2)-urban (class 5) 

interface (WUI). Other 23 specific LULC interfaces were obtained (6 urban, 12 agricultural and five 

grasslands types). LULC interfaces were spatially defined as the contact pixels among uses that formed 

each interface type; then, they were overlaid with the 1km2 cell grid and thus the density value of each 

interface in each cell was calculated, obtaining the LULC independent variables by 1km2.  

Table 1 - CCI-LC legend reclassification to define LULC interfaces  

General categories Disaggregated categories CCI-LC 2010 classes 

Forest total 1 (FT1) 

F1+F2+F3+F4+F5+F6 
Forest 1 (F1; Broadleaved) 50, 60, 61, 62 

 Forest 2 (F2; Conifer) 70, 71, 72, 80, 81, 82 

 Forest 3 (F3; Mix) 90 

 Forest 4 (F4; Shrubland) 120, 121, 122 

Forest total 2 (FT2) 

F1+F2+F3+F4+F5 

Forest 5 (F5; Mosaic tree, shrub and 

grassland) 
100 

 Forest 6 (F6; Grassland) 110, 130 

Agricultural total (AT)  

A1+A2 

Agricultural 1 (A1; rain feed, irrigated crops, 

mosaic agriculture >50% and natural 

vegetation <50%) 

10, 11, 12, 20, 30 

Agricultural 2 (A2; mosaic agriculture <50% 

and natural vegetation >50%) 
40 

Grassland (G)  110, 130 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd64a1_v006
https://firms.modaps.eosdis.nasa.gov/
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Urban (U)  190 

Forest total 1 (FT1) was the sum of all forest categories while Forest total 2 (FT2) excluded forest 

grassland (F6). Agricultural total (AT) was the sum of A1 and A2. Figure 32 shows the spatial location 

of the general LULC interfaces. 

 
Figure 2 - LULC Interfaces Forest-Grassland Interface (FGI), Forest-Agriculture Interface (FAI) and Wildland-

Urban Interface (WUI) at 1km2 grid cell resolution for Zamora (left) and Madrid (right)  

As biophysical parameters were considered orientation, maximum, minimum and mean 

temperature, accumulated precipitation and live Fuel Moisture Content (FMC). Regarding the 

meteorological variables (maximum, minimum and mean temperature, and accumulated precipitation) 

used for this study, they have been built based on a quality controlled weather stations network 

belonging to the Spanish Meteorology Agency (AEMET). A two-step regression kriging (Hengl et al. 

2007) interpolation method has been applied to the monthly values. First, a regression model was 

defined for each region considering as predictors several orographic variables including elevation, 

distance to coastline and topographic blocking effects (Bedia et al. 2013) to interpolate the 

observations to the high-resolution grid of 1km2 spatial resolution. Then, the monthly residuals 

obtained from the regression model were interpolated to the target resolution using Ordinary Kriging. 

Finally, the interpolated values were obtained by combining both interpolated values using an additive 

and multiplicative functions for temperatures and precipitation, respectively. As a result, the weather-

related biophysical parameters (Table 2) were defined as the climatologies for the period considered 

in the analysis (2000-2010). 

Live FMC was obtained using a physically-based retrieval model and MODIS reflectance data 

(MCD43A4 Collection 6) using radiative transfer model Look-Up Table inversion (Yebra et al. 2018). 

 
 Table 2 - Independent variables of the model  

Variable type Variable Description Abbreviation  

Biophysical Mean accumulated 

precipitation 

Interpolated monthly 

accumulated precipitation 

(mm). Mean of 2000-2010 

pr_m 

Mean monthly 

maximum, 

minimum and 

mean temperature 

Interpolated monthly 

maximum, minimum and 

mean temperature (ºC). 

Mean of 2000-2010  

tmax_m  

tmin_m 

tas_m 

Live Fuel Moisture 

Content 

Mean of 2000-2010 LFMC_m 

 Orientation   or 

LULC main 

interfaces 

Forest Agricultural 

Interface 

Agricultural1+Agricultural 2 

|| Forest total 1 

FAI 
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Forest Grassland 

Interface 

Grassland || Forest total 2 FGI 

Wildland Urban 

Interface 

Urban || Forest total 1 WUI 

LULC specific 

interfaces 

 Urban || Forest 1 U-F1 

 Urban || Forest 2 U-F2 

 Urban || Forest 3 U-F3 

 Urban || Forest 4 U-F4 

 Urban || Forest 5 U-F5 

 Urban || Forest 6 U-F6 

 Agricultural 1 || Forest 1 A1-F1 

 Agricultural 1 || Forest 2 A1-F2 

 Agricultural 1 || Forest 3 A1-F3 

 Agricultural 1 || Forest 4 A1-F4 

 Agricultural 1 || Forest 5 A1-F5 

 Agricultural 1 || Forest 6 A1-F6 

 Agricultural 2 || Forest 1 A2-F1 

 Agricultural 2 || Forest 2 A2-F2 

 Agricultural 2 || Forest 3 A2-F3 

 Agricultural 2 || Forest 4 A2-F4 

 Agricultural 2 || Forest 5 A2-F5 

 Agricultural 2 || Forest 6 A2-F6 

 Grassland || Forest 1 G-F1 

 Grassland || Forest 2 G-F2 

 Grassland || Forest 3 G-F3 

 Grassland || Forest 4 G-F4 

 Grassland || Forest 5 G-F5 

 

 

Wildfire occurrence was estimated using Generalized Linear Models (GLMs). GLMs are 

extensions of linear regression models that support dependent variables with non-normal distributions, 

such as binomials (Guisan et al. 2002). Fire events are a rare event and therefore the number of cells 

with fire absence is highly superior to the cells with fire presence. A random sample of the absence-

fire cells was selected as model input to retain enough covariate information on the non-ignitions for 

modelling as in Preisler (2004). This introduces a deterministic offset term of –log (πxyt) that does not 

bias the analysis (Vilar et al. 2010). πxyt denotes the response-specific sampling rate. When πxyt=1, πxyt 

is also 1, and when πxyt =0, πxyt =π. In this work a sample of 10% (Zamora) and 5% (Madrid) of the 

zero-fire cells was selected. See Preisler et al. for further details (2004). The resulting dataset was 

randomly divided into two groups, 75% for model calibration and 25% for validation. The lowest 

Akaike’s Information Criterion (AIC) value was use to select the best model. As regression models 

assume uncorrelated independent variables, a multicollinearity analysis was performed before running 

GLM using the Spearman correlation among variables and by Variance Inflation Factor (VIF). VIF 

can distinguish the degree of multicollinearity when variables are not centred (Freund et al. 2003). 

Spearman correlations higher than 0.7 and/or VIF higher than 10 (Hair et al. 1995) indicated 

multicollinearity and affected independent variables were not included in the analysis. 

 

 

Four sub-models to estimate wildfire occurrence were obtained for each province (Table 4 and 

Table 5). Exploratory analysis showed high Spearman correlations between tmin_m and tmax_m 

(0.77) and between tas_m with tmax_m and tmin_m (~0.9) with VIF>100 in Zamora. So for 

multicollinearity problems tmin_m and tas_m were not included into the analysis.  
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Table 3 - Estimated coefficients and significances (Wald test) for each of the GLM predictors for Zamora 

 LULC LULC + Biophysical 

 LULC general  LULC general   

Predictor Estimated coefficient Probability  Estimated coefficient Probability  

(Intercept) -2.1127     < 2e-16 *** -6.3841    1.62e-06 *** 

FAI 0.3815   0.0307 *   0.7239    0.000153 *** 

WUI 9.2816    0.0408 *   - - 

FGI 2.5393 9.65e-08 *** - - 

tmax_m  - - 0.1058    0.100256     

pr_m   - - 0.0433    < 2e-16 *** 

LFMC_m - - -0.0291    0.000115 *** 

 LULC specific LULC specific 

(Intercept) -2.0403     < 2e-16 *** -7.6508  3.49e-08 *** 

A1-F1  3.02733     0.074423 .   - - 

A1-F2  2.76241     0.003724 ** 1.5750    0.1353 

A1-F3    16.4596        0.2393 

A1-F5  - - 1.2283     0.0018 ** 

A2-F1  28.13043    0.26208    54.2354   0.1163 

A2-F2     -3.7303   0.0092 ** 

A2-F4  - - 1.7752      0.0627 . 

A2-F5  4.4464     0.00021 *** 2.0049   0.1270 

A2-F6  -2.6657     0.02520 *   -3.0915    0.0182 * 

U-F1    -76.6902   0.2126   

U-F3    -5.6318    0.0538 . 

U-F6  64.5968    0.1569     - - 

G-F2       2.5017     0.05652.   - - 

G-F4      7.6999   0.00015 *** - - 

tmax_m - - 0.17048    0.0110 * 

pr_m   - - 0.04573    < 2e-16 *** 

LFMC_m - - -0.02834    0.00023 *** 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

In Zamora province, the model using as independent variables only general LULC interfaces (FAI, 

FGI and WUI) showed that the three of them were significant, however where the biophysical variables 

were also included the only significant LULC was the FAI along with the mean precipitation and the 

live FMC. In those models that included all 23 specific LULC interfaces, the ones that contributed to 

the model were the Agricultural (with no natural vegetation, A1)-Conifer forest (F2), Mosaic 

agriculture (A2)- Mosaic forest (F5), Mosaic agriculture (A2)-Forest grassland (F6) and Grassland-

Shrub (F4) interface. Both mean precipitation and live FMC were significant when the biophysical 

variables were included in the model. A2-F6 was also contributing to the model as well as two more 

specific agricultural-forest related interfaces. The global accuracy of the models improved when the 

biophysical variables were included with a sensitivity a omission error of 42.78% and 57.22% and 

41.18% and 58.82% in the LULC general and specific model, respectively. 

 
Table 4 - Estimated coefficients and significances (Wald test) for each of the GLM predictors for Madrid 

 LULC LULC + Biophysical 

 LULC general LULC general 

Predictor Estimated coefficient Probability  Estimated coefficient Probability  

(Intercept) -1.3870   < 2e-16 *** -0.0081   0.9850 

FAI -2.1279    4.62e-12 *** -1.8267   1.65e-08 *** 

WUI - - - - 

FGI - -   

pr - - -0.0350 0.0011** 
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 LULC specific LULC specific 

(Intercept) -1.4321    < 2e-16 *** 0.0380  0.9329 

A1-F3 -21.2314 0.1652 -19.3975 0.1682 

A1-F5  -3.5485 0.0191* -3.4152   0.0272* 

A1-F6      -1.9583 0.02594 ** -2.422 0.0019 ** 

A2-F3  36.6788   0.3786 33.1694   0.3575 

A2-F5  -3.5859 0.0014 * -3.0695  0.0064 ** 

U-F2   4.7141 0.1728   6.0985 0.1009 

G-F1        -28.0549    0.2770     -28.9154   0.2360 

G-F2  - - 6.2943  0.0479* 

G-F5   -8.8926 0.0001 *** -9.8587  0.0001 *** 

pr - - -0.0382 0.0006*** 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

In Madrid the model with the general LULC interfaces showed FAI was significant and with 

negative sign. When the biophysical variables were added, the mean precipitation also contributed to 

the model. Regarding the models that included the specific LULC interfaces the significant variables 

were the Agricultural (with no natural vegetation, A1)- Forest Mosaic forest (F5) and Forest grassland 

(F6), and Grassland- Mosaic forest (F5) (negative trend). When biophysical variables were included, 

mean precipitation was significant as well as three agricultural-related LULC specific interfaces 

(A1F5, A1F6, A2F5), G-F2 and G-F5. Similarly to Zamora, the global accuracy of the models also 

improved in Madrid when the biophysical variables were included with a sensitivity of ~6% and a 

large omission error of ~90%. However, the general fit of the model was not satisfactory for this site.  

 

 

LULC interfaces have been used as predictor factors to estimate wildfire occurrence in previous 

works (Syphard et al. 2007); (Padilla and Vega-García 2011); (Vilar et al. 2016b); (Martínez et al. 

2009). In this work include LULC disaggregated interfaces were included to consider different forest 

types regarding tree species (conifer, deciduous, mixed) and different vegetation formations (shrubs 

and pastures). Two very different Spanish provinces (Zamora and Madrid) have been analyzed with 

the aim to obtain predictive wildfire models that gathered those territorial and fire-related differences. 

The inclusion of the biophysical variables allowed to quantify the improvement on the predictive 

ability of the proposed models in comparison to models only calibrated with LULC. 

Biophysical factors contributed the most in both sites. Mean precipitation and LFMC were the 

stronger contributors in Zamora while precipitation in Madrid. Regarding the LULC interfaces, 

agricultural-forest related interfaces explained fire occurrence in Zamora with the expected trends 

(positive), coincident with Rodrigues et al. (2014). The authors used Geographic Weighted Regression 

(GWR) model for the estimation of fire occurrence probability in Spain and FAI interface also showed 

an important contribution in Zamora. Also, FGI contributed to the general model, possibly related fires 

associated with accidents or negligences derived from traditional agricultural practices as pasture 

burning. In Madrid, none of the specific WUI related interfaces contributed to the model and most of 

the variables had a negative trend, contrary as expected about fire ignition in this region (Vilar et al. 

2016b). 

In general, the models performed better in Zamora than in Madrid. We hypothesize that the spatial 

distribution of the response variable might be influencing in this result as MODIS is mainly detecting 

the agricultural fires but not the forest fires due to the small area that these fires usually have in this 

region where firefighting is quite effective in extinguishing the fires in their earlier phases.  

The use of indicators of human-related ignition potential is a key issue in fire risk estimation in 

European Mediterranean areas where a high percentage of fires are due to human causes. As proven 

in this work and also demonstrate by other authors, LULC interfaces indirectly represent human 
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activities associated with fire ignition. This information can be obtained from Land Cover (LC) maps 

globally available at appropriate management scales as is the case for the CCI-LC. This availablility 

of global LC maps will allow applying the proposed methodology to other study sites and temporal 

periods. The combination of specific LULC interfaces along with the biophysical variables might help 

to obtain a more detailed wildfire occurrence explanation at a global scale too. 
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