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Abstract 

From a point source, landscape fires accelerate until they reach a quasi-equilibrium rate of spread. The 

rate at which a fire accelerates from its ignition affects the time first responders have to attack a fire in its 

initial stages when it is more easily suppressed. As such, knowledge of the rate of acceleration of a fire from 

ignition can be valuable from a fire management perspective.  However, the majority of studies in wildland 

fire science have been dedicated to development of models for the quasi-equilibrium rate of spread attained 

by the fire after its acceleration phase. Comparatively little attention has been given to the development of 

models that specifically account for the growth phase of a fires development.  

The rate of acceleration depends on many factors including variations in ambient and induced wind speed 

and direction, variation in moisture content of the fuel, fuel stratification and slope variation. Present models 

of fire growth from a point ignition are expressed as deterministic algebraic equations, thereby neglecting 

variability. The numerous variables involved make predictions of rate of spread from a point source very 

difficult.  

In this paper we consider two approaches to model the acceleration phase of a fire. The first considers 

fitting a sigmoidal (logistic) function to experimental data using a nonlinear regression procedure.  In the 

second approach we propose the use of stochastic differential equations to investigate the growth of a fire to 

quasi-equilibrium. In addition to providing a more realistic portrayal of the time series data relating to fire 

growth, this second approach allows for better discrimination of the mechanisms driving the growth phase of 

fire spread.   

The models are assessed by appealing to observations of experimental fire growth.  Specifically the data 

relate to fires growing from a point ignition under the influence of a uniform wind. The results indicate that 

both approaches can provide an accurate representation of the observed data, but that the approach based on 

stochastic differential equations yields 95% prediction bounds that are narrower than those obtained from the 

nonlinear regression. The difference in prediction bounds indicates that the way stochasticity is incorporated 

into fire growth models has implications for how models inform decisions about the likelihood of a fire self-

extinguishing before it reaches quasi-equilibrium, and the magnitude of the rates of spread it is likely to 

exhibit during the initial stages of growth. 

 

Keywords: Fire growth; fire acceleration; rate of spread; nonlinear curve-fitting; stochastic differential equation  

 

 

Bushfires are a significant environmental problem.  In the last decade this has become increasingly 

apparent, with several major conflagrations causing extensive loss of life and property, and 

considerable environmental damage. Regardless of the ultimate size and intensity of a bushfire, all 

fires start small – often originating as a point ignition, or something akin to a point ignition, and 

growing in a manner that is governed by the ambient environmental conditions.  In addition, under 

certain conditions a bushfire will deposit firebrands ahead of the main front, igniting spot-fires, which 

can also be viewed as evolving from a point source.  

Landscape fires originating from a point source accelerate until they reach a quasi-equilibrium rate 

of spread. This behaviour has also been confirmed in laboratory experiments (McAlpine & Wakimoto 
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1991). Attacking fires while they are in their acceleration phase, before they have attained their 

potential quasi-steady rate of spread, provides a greater chance of suppression success (Cheney & 

Gould 1997). As such, there are good reasons to understand the likely behaviour of a fire during its 

acceleration phase, and mathematical modelling provides a means to improve this understanding. 

However, in comparison with the vast literature that deals with modelling the quasi-equilibrium rate 

of spread, there is little that specifically considers this acceleration phase of a fires development (Cruz 

et al. 2015). The way a fire develops during its acceleration phase depends on the local environmental 

conditions, including variations in ambient and induced wind speed and direction, and variations in 

moisture content and structure of the fuel. Even when a fire attains quasi-equilibrium state, its rate of 

spread can still exhibit considerable variation about a mean value.  

However, present models of fire growth from ignition are expressed as deterministic algebraic 

equations, thereby neglecting variability.  Parameters in such models are estimated using nonlinear 

regression of empirical data, and once determined they are considered as fixed; separate estimates are 

required for different fuel types and environmental conditions.  Any resulting model lacks flexibility 

and should not be used in circumstances where the fuel and environmental conditions are 

heterogeneous.  

Moreover, interactions between winds, terrain, different vegetation types and structures means that 

the conditions affecting the initial growth of a fire (and its longer-term propagation) can never be 

adequately quantified in solely deterministic terms. Coupling between the fire and the atmosphere 

further confound this situation. The intrinsic variability of the factors affecting the initial growth of a 

fire means that deterministic modelling approaches are ill-suited to modelling this aspect of fire spread. 

Indeed, such approaches gloss over the detailed dynamics, which are inherently stochastic in nature 

due to the turbulent conditions under which fires develop. Recent advances in stochastic dynamical 

systems theory and their applications, as well as in our understanding of dynamic fire behaviour mean 

that we are now able to explicitly address the acceleration phase (from a point ignition) of fire growth 

in terms of stochastic dynamic systems.  

The models we propose in this paper appear to be the first to consider the acceleration phase of a 

fire’s growth as a stochastic dynamical system. Such an approach permits a probabilistic interpretation 

of fire growth, which allows for estimation of worst-case and mean-case scenarios. Also, by explicitly 

accounting for the intrinsic variability of fire spread and the environmental conditions that drive it, our 

stochastic approach has the potential to provide greater insights into the physical processes governing 

fire growth, particularly in its acceleration phase. 

 

 

The rate of spread (ROS) data used in this study are taken from McAlpine & Wakimoto (1991). 

The data were extracted using G3DATA (Frantz 2000) and are reproduced in Figure 1. The data set 

represents five replicates of the ROS observed  in a wind tunnel experiment.  In each case the fuel load 

was 26.3kg/m3 and burned under the influence of a wind speed of 4.8 km/hour. The temperature 

(26.7oC) and humidity (80%) were controlled for. The fuel moisture content was measured just prior 

to burning, and the mean of the five replicates was 8.62% (standard deviation of 0.57).  It is of 

fundamental interest that even with carefully controlled conditions and a fixed wind speed, the 

variation in ROS can be substantial. As already mentioned, this variation may be due to differing fuel 

moisture content, variability in the packing of the fuel bed for each experimental run (Finney 2004), 

and turbulence induced by the fire itself. We treat each of the replicates in Figure 1 as independent 

data sets. 
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Figure 1 - Observed rate of spread for a pine needle fuel bed, with a bulk density of 26.3 kg/m3 and burned at a wind 

speed of 4.8 km/hr. Five replications are shown, each symbol (square, circle, etc.) being a separate replication. 

(Figure recreated from McAlpine & Wakimoto (1991).) 

 

 

 

Typically, a model for the ROS, , is obtained by postulating a functional form with a set of 

unknown parameters that need to be determined. The shape of the functional form is driven by the 

data. McAlpine & Wakimoto (1991) provide a summary of some well-known models that are relevant 

for different environmental conditions and fuel types. These include exponential-type models

 and , and power-law models . In all 

cases α, β and are constants that need to be determined. In the exponential-type models,  

as , where  is the asymptotic or quasi-equilibrium ROS.  The power-law model never attains 

a quasi-equilibrium state.  

Considering the data in Figure 1, it appears that there is an initial rapid increase in the ROS until 

reaching an inflection point, after which the acceleration begins to decrease, asymptotically 

approaching the quasi-equilibrium ROS. To describe this behaviour, we propose a sigmoid (logistic) 

function: 

 

 

 

(1) 

 

for  data points . Here  is the initial value of the ROS, the quasi-equilibrium value is 

and   is the rate of increase of the ROS. The  are independent and normally distributed errors. 

The basic assumptions of regression analysis are assumed except constant variance. The latter is 

justified since the variability in the data tends to increase with increasing ROS.  

The aim is to estimate the three parameters, , and  , by implementing a weighted nonlinear 

least-squares method to minimise the sum of the weighted square of the errors (or weighted residuals) 

between the observed  and the curve-fitted values for each . The weighted sum of squares is 
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where  are the weights. The weights determine how much each  value influences the final 

parameter estimates. Here the residuals are weighted using a bi-square weighting scheme. This method 

minimises a weighted sum of squares, where the weight given to each data point depends on how far 

the point is from the fitted line. Points near the line get full weight. Points farther from the line get 

reduced weight. Points that are farther from the line than would be expected by random chance get 

zero weight. The bi-square weights are given by  

 

 

 

 

where the  are the standardised adjusted residuals. Robust fitting with bi-square weights uses an 

iteratively re-weighted least-squares algorithm. 

The minimisation of  with respect to the parameters must be carried out iteratively. The 

Levenberg-Marquardt method is a standard technique for solving nonlinear-least squares problems 

(Rowlings et al. 1998). The Levenberg-Marquardt curve-fitting method is a combination of two 

minimisation methods: the gradient descent method and the Gauss Newton method. In the gradient 

descent method, the sum of the squared errors is reduced by updating the parameters in the steepest-

descent direction. In the Gauss-Newton method, the sum of the squared errors is reduced by assuming 

that the least squares function is locally quadratic and finding the minimum of the quadratic. The 

Levenberg-Marquardt method acts more like a gradient-descent method when the parameters are far 

from their optimal value and acts more like the Gauss-Newton method when the parameters are close 

to their optimal value. Both options are available in MATLAB. 

 

An alternative to nonlinear regression is to reformulate the model as a differential equation (DE), 

specifically as a stochastic differential equation (SDE). For a dynamic process such as the spread of a 

fire it seems more natural to employ a DE or an SDE. Using an SDE allows for the inclusion of local 

environmental variability that might be due to heterogeneous fuels or changes in wind direction and 

strength.  

With reference to Figure 1, during the early development of the fire, , then as 

, . This behaviour is captured by the logistic DE. The stochastic version of the 

logistic DE written in the Ito form is (Gardiner 2009),  

 

 

 

(2) 

 

where the parameters , and   have the same meaning as before. The first term on the right-

hand side is the drift and the second term is the stochastic term, often called the diffusion. The 

parameter  is the strength of the local environmental variability and  is a standard Wiener 

process with expected value  and variance  . The appearance of  in 

the stochastic term assumes that the variance increases with increase in the ROS. For  the 

solution to the resulting (deterministic) ODE is the sigmoidal curve (1). This provides a basis for 

comparing the two modelling approaches. 
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It is worth noting that equation (2) is related to the power-law nonlinear model of Dold & Zinoviev 

(2009), for the modelling of fire eruptions.  Under certain conditions the rate of change of the ROS 

satisfies 

 

 

 

with . Setting , we arrive at equation (2). For this model, as with the equation (2), 

there exist two equilibrium points (in the absence of noise), namely  (unstable) and 

 (stable).  This means any slight perturbation off the  equilibrium state, the ROS 

will accelerate towards the  state. 

It should be further noted that according to equation (2), the acceleration starts off small, increasing 

until reaching the maximum acceleration of  after which the acceleration begins to decrease 

approaching zero as .  This is reflected in the solution curve of  as a concave up 

function during the initial phase of fire spread, followed by a change in concavity at the inflection 

point at . This is consistent with the choice of the nonlinear regression curve of equation (1). 

 

 

For illustrative purposes we fit the curve to a single replicate of the ROS data (the squares) in Figure 

1. The null hypothesis is tha , and  are zero, compared to the alternate hypothesis that , 

and  is non-zero. The estimated parameters including a 95% confidence interval (CI) is shown in 

Table 1. 

For the ROS data, the estimated values and their CIs indicate there is statistical evidence to reject 

the null hypothesis, except for . This is problematic as it implies the model is inadequate.  To check 

this the integral of equation (1) was fitted to the measured distance travelled by the fire front from the 

time of ignition.  On this ocassion all of the estimated parameters are significant (see Table 1).  

Table 1 - Nonlinear curve-fitting to a single replicate (square symbol) to both the ROS and distance  

travelled by head of fire front 

 Estimated Parameters    

Data type 
   

RMSE R2 Adj R2 

ROS 0.203 1.576 1.622 0.445 0.648 0.623 

 (-0.109, 0.516) (1.248, 1.904) (0.135, 3.109)    

Distance 0.170 1.416 1.927 0.051 0.999 0.999 

 (0.121, 0.219) (1.366, 1.466) (1.567, 2.288)    

ROS 0.170 1.550 1.827 0.4263 0.665 0.654 

(refitted)  (1.305, 1.809) (1.165, 2.485)    

 

The reason for the difference is that the ROS, which is derived (backward differecing) from the 

observed distance data, is highly variable.  There is an order of magnitude difference in the Root Mean 

Square Error (RMSE) – the sandard deviation of the weighted residuals – a measure of spread of the 

difference between the predicted and observed values. The estimated R2 indicates that about 65% of 

the variability in the ROS data is accounted for by the fitted curve and a near perfect fit for the distance 

data.  Furthermore, plots of weighted residuals (not shown) indicate homoscedasticity of the variance 

and a lack of correlation in the errors.  

Our aim is to compare the nonlinear regression with that of the SDE. We therefore fix the value 

obtained from the distance data and determined the other two parameters for the ROS data. The 
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parameter estimates for the newly fitted nonlinear regression is also shown in Table 1.  The CI for 

and  are narrower, a slight reduction in RMSE and a slight increase in R2 which all amounts to an 

improvemnt with the refitted nonlinear curve (one less parameter to fit). A plot of the nonlinear 

regression curve is portrayed in Figure 2.  Also shown is the 95% prediction interval (PI) that 

represents an interval for a new observation of the ROS, conditioned on the observed data. 

 
Figure 2 - Plot of the nonlinear regression curve to the ROS data including a 95% prediction interval  for a new 

observation of the ROS. 

The solution to (2) typically requires a numerical approach, the simplest of these is the Euler-

Maruyama algorithm (Higham 2001). At the heart of this algorithm is the following discretisation of 

the SDE 

 

 

 

 

where ,  and . The numerical solution to 

the SDE is a single realisation, but what is of importance is to determine the expected value and 

variance of a large number of such realisations. 

To solve equation (2) we must specify four parameters: , ,  and . Strictly speaking we 

should estimate these parameters by using maximum-likelihood methods or other related techniques 

directly to (2) (Kloeden et al. 1994). Here, however, we make use of the values already determined 

previously, and our tasks remains to find . This is done by searching through a range of values of 

 for which the estimated variance  (estimated at  min) is equal to the MSE (square 

of the RMSE). This is justifiable if we seek to make a comparison between (1) and (2). 

To estimate both  and variance  we employ an Monte Carlo approach with a large 

number of realisations.  Figure 3 depicts the results of the 100,000 realisations. The figure shows the 

expected ROS with a 95% PI. Requiring    yields . It is clear that almost 

all of the data resides within the 95% PI, suggesting that the proposed model provides a good 

description for the observed ROS. 
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Figure 3 - Plot of the expected ROS based on 100,000 realisations of the SDE. Also shown is the 95% prediction 

interval for a new realisation of the SDE. Here t = 0.01.  

Over the time domain relevant for the duration of the experiment, the lower of the 95% PI offers 

practical information about the likelihood of the fire self-extinguishing, often referred to as a ‘go/no-

go’ threshold. The closer the lower prediction interval is to zero, the more likely the fire will self-

extinguish. The upper prediction interval provides important information for fire management, as it 

relates to the potential for rapid initial growth of a fire in the landscape.  Knowledge of the upper 

prediction interval can therefore give fire managers a better idea of the operational window for initial 

response once an ignition occurs, thus enabling more informed deployment of personnel and assets to 

head off a fire during its initial stages. 

It is of interest to note that both of the PIs for the SDE model are roughly  the same as for the 

nonlinear regression – the variance for both models was set to be equal once quasi-equilibrium was 

reached. Since they both have the same variance, any differences must be intrinsic to the way 

stochasticity is accounted for in each model.  The major difference appears in the intial acceleration of 

the fire.  Based on the width of the PI, the nonlinear regression predicts that self-extingishing is more 

likely during the first 1 min since ignition, compared to that of the SDE. The SDE on the other hand 

shows a rather narrower PI which increases over time.  The chances of the fire to self-extinguish for 

the same set of parameters is greatly reduced.  The result imply that a fire whose behaviour is more in 

accord with the SDE model is less likely to self-extinguish, and has the potential to exhibit higher rates 

of spread. 

Computing a large number of realisations allows us to generate statistics concerning fire spread. 

Figure 4 shows a frequency distribution of the ROS at four different times: 1 min, 2 min, 3 min and 4 

min. Superimposed is a continuous curve obtained via kernel smoothing to help aid in identifying the 

location of the distribution and the skewness that is apparent at earlier times. The distribution is narrow 

at earlier times, the distribution continues to evolve and by  min the frequency distribution 

remains relatively unchanged, having achieved a quasi-equilibrium state. From this we can estimate 

the probability that the ROS is larger than a particular value, or lies within some range of values, at 

any time   after ignition.  This is in contrast to the nonlinear regression foe which the distrubution is 

stationary for all times. 
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Figure 4 - The evolution of the frequency distribution for the ROS based on 100,000 realisations. 

 

 

Equation (2) is a first step toward modelling the fire growth from ignition using an SDE. The 

manner by which stochasticity is added is a modelling issue that deserves further inquiry.  Equation 

(2) incorporates  stochasticity by aggregating the effect of growth and self-limiting of the spread, both 

of which are affected by local environmental variability, into a single term. 

To use the nonlinear regression (1) in making predictions requires that the parameters be determined 

and kept fixed for a given set of environmental conditions.  This means for a change in wind speed 

requires equation (1) be refitted, likwise if excelsior fuel is used instead of pine needles.  The SDE 

approach (2) allows slightly more flexibility, but here too the model is inadequate as it cannot 

discriminate how different conditions can impact fire growth and accelaration – such as different fuel 

types, changes in wind strength and direction and variability in moisture content, etc.  This limits the 

usefulness and application of both approaches. 

However, some progress cna be made by treating some of the parameters as state variables.  

Suppose that the local quasi-equilrium rate of spread  is now a state variable and is a function of 

the wind velocity. We consider the effect of changes in wind speed and direction.  The simplest of 

such models is described by a stochastic process 

 

 

 

(3) 

 
 

 
 

 

Here  represents a change in the local wind direction and strength;  helps to 

increase , while  to decrease . The exact solution is  with

 and  . 
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Figure 5 - Plot of three different realisations of  the local quasi-equilibrium and the solution (black) for the ROS 

based on model (3).  One realsistion is seen to self-extinguish (green). 

Figure 5 depicts three realisations of equation (3) with .  One realisation (blue) is 

the effect of a number of favourable wind changes that have increased the local  thus increasing 

.  Due to a series of unfavourable wind changes in another realisation (green) the  is seen to 

have reached zero, and according to equation (3), the fire has self-extinguished.   

We are now in a position to estimate the probablity that a fire may self-extinguish.  Table 2 

summarises the results based on 10,000 simulations of equation (3) for different levels of noise 

intensity.  The probability increases as the ratio  decreases. 

Table 2 - Estimate of the probability to self-extinguish based on 10,000 realisations of equation (3) 

 

0.2 0.4 0.6 0.8 

Probability 2.6×10-4 6.8×10-2 0.22 0.36 

 

The idea that the ROS depends on the energetic ratio balance between the heat released by 

combustion and the energy necessary for fuel ignition is well known (Viegas, 2004).  Certainly the 

energy required for ignition of moist fuel is greater than that of dry fuel, thus mosit fuel will have a 

dampening effect on . Based on experiments, Rossa (2017) developed an empirical model for 

that is a power-law of the moisture content of the fuel.  This could be incorporated into equation (3) to 

model the effect of a fuel with variable moisture content on the ROS as the fire develops. 

Lastly, another important effect on the ROS is the curvature of the fire front.  For a point-source 

ignition, the fire front curvature is large and as the fuel burns the radius of the fire front increases, the 

curvature decreases, until at such time the expanding ring of fire essentially behaves as a line fire.  

Point-source ignition takes a longer time than a line ignition to accelerate to (McRae 1999).  

However, differences can be variable and depend on the types of fuels (Finney & McAllister 2011).  

Weber (1989) developed a theoretical framework for the ROS from a point-source ignition, and the 

conjoining of this model with that of equation (3) may be used to model the evolution of a point-source 

ignition to a line fire subject to variable environmental conditions. 
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In developing models for the spread of fire it is customary to fit the data based on some prescribed 

functional form. Such methods provide good descriptions of the time evolution of the mean ROS from 

time of ignition. The aim is to obtain parameter estimates and relevant CIs of the fixed parameters for 

the spread rate. Alternatively, an SDE formulation is a natural way to describe the rate of change of 

the ROS, a quantity that can be experimentally measured. Carrying out a large number of simulations 

enables the construction of an empirical probability density function for the ROS, from which 

statistical quantities can be determined. This has practical implications for the management of fires. 

The model we propose explicitly incorporates the stochastic dynamics of fire spread and 

environmental variability. Through our model we seek to provide a more appropriate method for 

assessing the likely development of fires in the landscape. It is expected that the model can be used to 

better inform the decisions that need to be made by fire managers through provision of a probabilistic 

framework that acknowledges the uncertainties inherent in fire spread. 

The SDE formulation for the spread rate is particularly attractive as it provides a way to explicitly 

involve a fire’s history (Viegas 2004). This could be accomplished by using either a distributed time-

delay in the spread rate, which involves a weighted average of the spread rate taken over all previous 

times, or as a discrete time-lag due to the process of pyrogenesis (Dold & Zionviev 2009). This line of 

research is currently being investigated. 
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