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TURING MACHINE AS AN IDEA OF AN 
INTELLIGENCE WITHOUT CONSCIOUSNESS 

 
 

I 
 
A Turing machine represents a model of a serial step-by-step computational procedure 

for solving problems that can be expressed in digital terms. What is known as the Church-
Turing thesis amounts to the claim that any computable function is computable by such a 
machine. Indeed there is a widely held view, shared, incidentally, by Turing himself, that 
computability by a Turing machine defines what ‘computable’ means. This view, though 
widely held, is nevertheless not uncontested, and in recent times in particular there has been 
a great deal of talk about the so-called ‘super-recursive algorithms’ which are claimed by 
some mathematicians to provide more efficient models for solving certain problems. However 
I do not propose to engage in this particular debate. What is relevant to my present purpose 
is that such criticism as is directed against Turing’s computational model is prompted mainly 
by the apparent inability of such a model to provide answers to certain questions arising 
specifically in connection with what is known as the ‘halting problem’ – the questions 
which, I shall argue, require a reference to a conscious agent. 

But more on this later. As far as Alan Turing himself was concerned, he did not seem to 
have any doubts that intelligent reasoning in all its forms, essentially, represented certain 
algorithmic operations; in particular such as could be executed mechanically by what he 
called a ‘discrete state’ machine. In other words, he took what was in effect a reductionist 
view of consciousness. With intelligent activity being computational in nature, he seemed to 
think, consciousness, strictly speaking, was operationally redundant. This was surprising in a 
way, for, as we shall see presently, he himself had proved an important mathematical 
theorem, which appeared to undercut his own reductionist argument by showing in effect 
that there was a world of difference between the questions that can be meaningfully asked 
and the questions that can be computationally answered; a difference which presupposes a 
conscious activity of understanding.  
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2 
 
Consider, first, his views on the computational nature of thought as set out in his paper 

Computing Machinery and Intelligence (1950), which has inspired a vast body of research 
into Artificial Intelligence. 

To ask whether machines can ‘think’, and hence mimic human intelligence, as Turing 
points out, inevitably raises the problem of definition of ‘machine’ and ‘think’, and here the 
ordinary usage is not necessarily a reliable guide. The only way to make the question 
sufficiently precise, he argues, is to rephrase it in operational terms; more specifically, in 
terms of what he calls an ‘imitation game’. In his own version of the game (many alternative 
versions have been proposed since) two persons, a man and a woman, are interrogated via a 
teleprinter by a third player, who sits in a separate room and tries to determine from the 
answers given – some of which may be deliberately misleading – which of the other two 
belongs to what sex. Turing's main thesis is that such rational substance as may be extracted 
from the question ‘Can machines think?’ can in this instance be expressed operationally by 
asking: ‘If one of the two players being quizzed is replaced by a sufficiently powerful digital 
computer, would the interrogator come to a wrong decision as often as before?’ An 
alternative, and somewhat simplified, version of the game involves an interrogator quizzing a 
computer and a human, both separated from the interrogator by a screen, in an attempt to 
establish which one is which. If, after prolonged questioning, the interrogator is unable to 
decide which of the two examinees is a machine and which is human then, Turing argued, 
there can be no valid reason for denying that machines are capable of the same kind of 
intelligence as we ourselves are.  

The objective of the ‘imitation game’ was thus to demonstrate that the capacity for 
rational thought can to all intents and purposes be treated as a capacity for a specific 
computational manipulation of information. Once it is established – if it can be established 
– that operationally there is no essential difference between the capacity for reasoning and a 
computational manipulation of information any remaining hesitations one might have in 
accepting that machines can think can only be due to prejudice. What is more, one will have 
to concede that machines are in principle capable of performing any activities in which 
rational thinking processes play a part, such as setting up and evaluating hypotheses, 
drawing inferences from past experience, correcting their own mistakes, and generally 
adapting their behaviour to suit specific tasks. 

 
 

3 
 
Yet it may be questioned if the 'imitation game' really does show that the intellectual 

activity of the human brain can be defined purely ‘computationally’, i.e. in a mechanical 
fashion, without presupposing, or referring to, consciousness. Surely, it might be argued, the 
capacity we have of reflectively monitoring what we say, feel or do, not only influences the 
way we act but is a precondition of understanding of what is actually going on at the time. 
Even if the machine involved in the ‘imitation game’ produced correct answers on every 
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single occasion, there would still remain an important difference between its operations and 
the thinking processes of the human examinee, for such processes involve insight and 
understanding, and insight and understanding presuppose consciousness. But, then, how 
can thinking processes be literally compared to algorithmic operations performed by an 
automaton? 

Turing's reply to this is that if the machine’s actual performance matches that of a 
human being, the question of consciousness need not bother us unduly. As it happens, 
there is, he points out, something closely similar to the imitation game which has been 
around for a long time, namely viva voce examination. In such an examination the 
examinee’s grasp of the acquired information is tested in the light of the answers 
he/she gives irrespective of what may or may not be going on ‘inside their heads’. It is 
the actual performance that matters; all else is immaterial. 

Still the uneasiness persists, and it is not altogether surprising that it should. The reason 
for such uneasiness was already articulated by Plato, who addressed this issue in his 
discussion of knowledge. What Plato was anxious to point out was that having knowledge, 
or being in possession of knowledge, in the true sense of the word, implies an understanding 
of what one claims to know. But if that was the case, he argued, knowledge could not be 
equated simply with correct opinion or belief, even though the difference between them 
may not be that important in practical terms. Thus a man who knows the way to Larissa 
and another man who merely has the correct opinion as to which route to take will both 
guide travellers successfully to their destination. Correct opinion is thus ‘no less useful for 
action’ than knowledge. Yet, insists his Socrates - they are not the same. What is more, 
although there were few things he (Socrates) would be inclined to claim he really knew, this 
was most definitely one of them.1  

Plato's point, in short, is that while one can guess, or, by various means be induced to 
accept, correct opinions or beliefs, one cannot be made to see that – let alone understand the 
reasons why – such opinions or beliefs are correct. True knowledge cannot be had without 
understanding, and understanding cannot be mechanically imparted; and hence, strictly 
speaking, not (not conclusively, at any rate) externally verified either, even though the 
conditions can be created, in particular by skilful instruction, where an insight hopefully 
might emerge. It is one thing to guess at the truth, Plato was in effect saying, and quite 
another to know it. Theoretically all of one's opinions could be correct opinions, but they 
would not count as genuine knowledge unless they were accompanied by understanding and 
insight, and neither of these are possible without consciousness. 

If, however, consciousness is involved in ‘knowing correct answers’, then surely the 
functionalist theory of mind of the kind that Turing was advocating fails to give the full 
story. Now at this point, no doubt, the objection will again be raised that what matters in 
the end is not what goes on 'inside one’s head’ on some given occasion but whether, and 
how, it is possible to establish and maintain a successful exchange of information. What is 
important, it will be said, is whether the questions asked, or the answers given, are 
meaningful and contextually appropriate, even if the answers in the given case may not be 
correct.  

__________________ 
1 Meno, 98b 
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But that, of course, is precisely the problem. For how do we decide if the questions 
asked and the answers given are indeed meaningful and appropriate? A decision here clearly 
will depend a great deal on what goes on ‘inside our head’. Ordinary language abounds with 
concepts that are intelligible only with a reference to what goes on ‘inside our heads’. So 
either we shall have to devise an entirely different kind of language for transacting information, 
a language, that is, which has been systematically cleansed of any such references – in which 
case we shall have to confront the problem of justifying the loss of meaning involved in 
translations of ordinary language statements into such a reformed language – or else we shall 
have to abandon the reductionist policy and reconcile ourselves to what we instinctively know 
to be true, viz. that there is more to the use of language than can be mimicked by any 
computational manipulation of symbols. The point briefly is this: that if by some miracle a 
successful and sustained communication in terms of ordinary language concepts could be 
established with a computational mechanism then the conclusion would have to be not that 
the concept of consciousness is redundant but that the mechanism in question is endowed 
with consciousness. 

 
 

4 
 
Turing's advocacy of what was in effect a reductionist computational theory of intelligent 

mental processes is even more remarkable, considering that an inspiration for much of his 
work came from a mathematician whose proof of the inescapable incompleteness of any 
(consistent) system which encompasses ordinary arithmetic is sometimes seen as having dealt 
a severe blow to the ambitions of any such theory, i.e. Kurt Gödel. It is true that Gödel’s 
proof from time to time has been subject of extravagant claims, implying, among other 
things, that algorithmic procedures were not necessarily involved in arriving at mathematical 
truth, and that some other mysterious, or at any rate as yet unidentified processes were here 
at work. Nevertheless, as we shall see, his result provided a useful reminder that there was a 
place for mathematical intuition, flowing in particular from an understanding – and hence 
involving conscious awareness – of what one is doing when engaging in the activity of 
computation. Turing, by contrast, came to pursue a completely opposite route, dismissing 
any ostensibly non-computational aspects of computational activity as irrelevant and incidental 
to intelligent thought. 

I shall come to Gödel's proof in moment. First, let us consider briefly a theorem which 
Turing proved in his paper ‘On computable numbers, with an application to the 
Entscheidungsproblem’ (1936)2 and which, as I have already said, appears to run counter to 
the computational model of mind he subsequently came to espouse.  

It was, incidentally, in this paper that he first introduced the concept of a universal 
computing machine (subsequently known as the universal Turing machine) – a kind of 
universal operating system capable of running any program, or computing any mathematical 
algorithm. He did this, interestingly enough, with the expressed purpose of showing that 

__________________ 
2 Reprinted in Stephen Hawking’s anthology of seminal mathematical papers God Created the Integers (2006). 
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there were limits to what could be achieved by mechanical computation. He wanted to 
prove, that is, that there could be no universal computational procedure whereby it might 
be established unequivocally with respect to any given algorithm (any number-generating 
computational device) if that algorithm, for any given input, will or will not successfully 
complete the operation and generate what is recognisably a ‘computable number’. ‘Computable 
numbers’, according to his definition, were ‘the real numbers whose expressions as a decimal 
are calculable by finite means’; more clearly, they were numbers whose decimal digits could 
be successively worked out by a finite number of elementary mathematical operations on a 
finite number of symbols. Thus e.g. the square root of two evidently satisfies this condition, 
even though its decimal expansion is non-periodic as well as infinite. By contrast, 
incomputable numbers by definition cannot be expressed (calculated) in this way. A central 
implication of Turing's proof was that there could be no universal mechanical test for 
deciding in any given case if the relevant mathematical proposition ascribing a property to a 
certain number, or numbers, is or is not a theorem – i.e. whether it is provably true or false. 

In simple words, the problem Turing addressed might be expressed thus: Is it possible to 
establish mechanically what can and what cannot be established mechanically? That this turns 
out to be impossible is of some considerable philosophical significance. 

 
 

5 
 
Let us look briefly at how he arrived at this result. Having defined what he called 

‘computable numbers’, his next step was to consider the possibility of a mechanical procedure 
whereby all algorithms generative of such numbers might be listed in such a way that each of 
them could be assigned a unique identity tag, or a unique ‘description number’. The question, 
in short, was whether it was possible to computably order such algorithms? His reasoning 
owes a great deal to the so-called ‘diagonal procedure’ devised by G. Cantor, with a view to 
showing that there exist sets which are ‘non-denumerable’, i.e. which are greater than, and 
hence cannot be put into one-to-one correspondence with, the (‘countable’) set of natural 
numbers. What Cantor proved with the help of his ‘diagonal procedure’ was that the set of 
all real numbers (i.e. rationals + irrationals) in particular falls into this category, and therefore 
belongs to a higher order of infinity.  

Suppose we try to list all real numbers between 0 and 1 by correlating them with the set 
of integers, thus: 

1. 0. a1,a2,a3… 
2. 0. b1,b2,b3… 
3. 0. c1,c2,c3… 
and so on 
Then by picking out the sequence a1,b2,c3… which runs along the diagonal of the above 

list, and by suitably altering the respective digits as we go along, we can ensure that the 
resulting new sequence – i.e. the ‘diagonal number’ – will differ from any other number 
included in the list in at least one place. It follows that the set of all real numbers is not 
‘listable’; i.e. there are more real numbers than there are integers. 
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Now in a similar way Turing proposes to show that the set of all 'computable numbers' 
(in the sense of his definition) is not recursively, or computationally, listable. His proof 
involves the following key steps. Consider again a universal (‘Turing’) machine capable of 
operating any algorithm. Assuming that all algorithms (all computational mechanisms, that 
is) could be listed numerically, then clearly each of them could be attached a unique 
‘description number’, such that if a given 'description number' were to be inserted into such 
a machine the machine would dutifully start churning out the relevant sequence.  

The question that now presents itself is this: Could there be an algorithm capable of 
producing a list of ‘description numbers’ of all computable reals? The answer to this, it turns 
out, is no, for (this was the essence of his proof) if such an algorithm existed it could be 
combined with a modified universal Turing machine to generate a ‘diagonal number’ which 
(as in Cantor's argument) has a ‘description number’ which is not in the list. In other words, 
there can be no mechanical procedure for sorting out ‘description numbers’ of algorithms 
which do from those which don't express computable numbers; end of story. 

Why is all this important? In order to understand what is here at stake it might be helpful 
to recall some well-known views of Leibniz. Leibniz was firmly of the opinion that every 
problem, not just in mathematics but in all other disciplines too (except possibly in theology) 
could in principle be solved algorithmically, viz. by way of calculation, provided it was articulated 
in an appropriately reformed precise language (although, unlike Turing, he apparently did 
not draw from this any reductionist inferences with regard to consciousness). Calculemus, let 
us calculate, was his advice and his guiding principle. ‘Thus I assert’ – he wrote – ‘that all 
truths can be demonstrated about things expressible in this [reformed] language with the 
addition of new concepts not yet expressed in it – all such truths, I say, can be demonstrated 
solo calculo, or solely by manipulation of characters according to certain form, without any 
labour of the imagination or effort of the mind, just as occurs in arithmetic and algebra.’3 

Turing's proof, together with some other related results obtained by K. Gödel, A. 
Church and E. Post, in effect spells the end of this Leibnizian dream. What emerges is that 
there can be no universal computational decision procedure, no single universal inferential 
calculus – or what Leibniz called calculus ratiocinator – which might enable us to decide in 
any given case whether the relevant proposition is or is not a theorem. 

And this of course leaves us with a problem of truth: for although there can be no universal 
computational decision procedure for determining which arithmetical propositions are and 
which are not provable, it is still meaningful to ask if a proposition whose truth value cannot 
be thus decided (i.e. decided by the available computational methods) might nevertheless be 
true? The problem, as I pointed out earlier, is that the range of what can be meaningfully 
asked, and consequently the range of what can be meaningfully asserted, does not literally 
reduce to what in any given instance can be computationally decided. But, then, the 
inevitable question is, how can a ‘reductionist’ computational model of mind be adequate? 

 
 

__________________ 
3 Cf. E. Bodemann: Die Leibniz-Handscriften der Königlichen öffentlichen Bibliothek zu Hannover; quoted in 

Benson Mates, The Philosophy of Leibniz (New York - Oxford, 1986, p. 185n.) from where the above translation is 
taken. 
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6 
 
Time has now come to take a closer look at Gödel’s ‘incompleteness proof’, which 

towers in the background of all such reflections, and which is often said to have contributed 
more than any other piece of mathematical or philosophical reasoning towards exposing the 
essential defectiveness of the reductionist model of mind which Turing eventually embraced.  

For Gödel the problem that initially presented itself was whether mathematics could be 
fully axiomatised, such that all its theorems, i.e. all mathematical truths, could be demonstrated, 
or ‘derived’, from a given (finite) set of axioms and definitions. Or to put it in another way, 
whether there is a consistent system with a clearly specifiable axiomatic base consisting of a 
finite number of premises, from which it can be unambiguously decided in any given case if 
the relevant mathematical expression is or is not a theorem. What Gödel conclusively 
showed was that this was a logical impossibility. It is sufficient for a formalised system to 
include the ordinary arithmetic of integers for it to remain irredeemably incomplete; in 
other words, it will always be possible by using the arithmetical resources available within 
such a system to construct perfectly valid theorems which, however, will not be formally 
demonstrable from its axioms. One might try to increase the power of such a system by 
adding new axioms to its axiomatic base, but, provided the system remains consistent, no 
matter how far its axiomatic base is expanded it will never be able to encompass the entire 
range of mathematical truth. In other words, there will always be true mathematical propositions 
which will remain just outside of what can be formally demonstrated in any given instance. 
On the assumption that such a system is consistent, it will necessarily be incomplete. 

The assumption of consistency is vital, for in an inconsistent system anything can be proved. 
In short, what Gödel's incompleteness proof shows is that consistency is essentially incompatible 
with completeness, and vice versa. No formalised consistent system of general arithmetic can 
be complete, i.e. there will always be true mathematical propositions which will be formally 
undecidable from its axioms. At the same time, it is not possible to demonstrate the consistency 
of such a system (i.e. show that no contradictions flow from its premises) by relying on its 
resources alone. This did not mean that no proofs of consistency were possible, only that in 
this case no ‘internal’ proof of consistency could be provided.  

Gödel’s proof (as do many other mathematical proofs) exploits the idea of self-reference. 
Gödel has namely devised a method of representing meta-mathematical statements about 
arithmetical expressions in terms of arithmetical expressions themselves. This method of 
‘arithmetisation’ of meta-mathematics involved assigning a unique number to every symbol 
or sequence of symbols in a formalised system of arithmetic, including statements to the 
effect that a given mathematical sentence can, or for that matter cannot, be derived from the 
given axioms, i.e. that it is, or is not, ‘provable’ (and hence decidable) within the system. 
What Gödel managed to show was that a perfectly valid sentence could be constructed 
within such a system which says of itself that it is not provable, i.e. that it does not follow 
from the axioms, but which by meta-mathematical reasoning can nevertheless be shown to 
be true. But if there are true sentences which cannot be derived, or demonstrated, within 
such a formalised system then such a system is incomplete. Moreover such a system is 
essentially incomplete, because, as we saw earlier, no matter how much its axiomatic base is 
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expanded it will always be possible to construct new true sentences which cannot be proved 
within it.  

In short, we are once again forced to conclude that the range of what can be meaningfully 
asserted, and hence the scope of possible truth, does not reduce to what within a specified 
mechanical system (irrespective of how powerful such a system might be) can be algorithmically 
decided, and this has obvious implications for a theory of mind. Nevertheless certain 
important qualifications need to be added to this, as will become evident in a moment.  

 
 

7 
 
Inevitably this raises important questions about the nature of mathematical truth. What 

procedures should be followed in establishing mathematical truth, i.e. in deciding whether a 
given mathematical proposition is or is not a theorem? According to Alfred Tarski ‘a decision 
method must be like a recipe, which tells one what to do at each step so that no intelligence 
(my italics – E.P.) is required to follow it; and the method can be applied by anyone so long 
as he is able to read and follow directions’.4 

Turing's view is no different. And yet, as Gödel’s proof seems to show, it is not possible 
to settle the truth-value of all mathematical propositions computationally from a fixed 
number of axioms. In other words, there are limits to what can be computationally delivered 
on any given (finite) set of premises. The question of truth, it seems, raises issues which 
whilst not excluding computational activity nevertheless transcend the capacity of any 
specific algorithm, and can be settled only by a machine equipped with the kind of self-
monitoring activity normally associated with consciousness. So either we give up the notion 
that mathematics is concerned with truth or we shall have to accept that consciousness is an 
essential ingredient in mathematical reasoning.  

That mathematics is very much concerned with truth is the view of Roger Penrose, for 
whom the significance of Gödel's proof consists precisely in exposing a discrepancy between 
mathematical truth and computability (in the sense in which both Gödel and Turing 
employ the latter concept, i.e. step by step calculating procedure that can be mimicked by 
digital machines). ‘If thinking’ – writes Penrose – ‘is just carrying out a computation of 
some kind, then it might seem that we ought to be able to see this most clearly in our 
mathematical thinking. Yet, remarkably, the very reverse turns out to be the case. It is 
within mathematics that we find the clearest evidence that there must actually be something 
in our conscious processes that eludes computation.’5  

This of course is the exact opposite of what Turing was suggesting in his 1950 paper (i.e. 
Computing Machinery and Intelligence), to which I referred earlier. If the intellectual activity 
of the human mind could be explained in computational terms, Penrose is in effect saying, 
then the universal Turing machine might indeed be an appropriate model to use; but if 

__________________ 
4 ‘A Decision Model for Elementary Algebra and Geometry’, quoted in Raymond L. Wilder: The Foundations 

of Mathematics, 1958, p. 261 
5 Shadows of the Mind, p. 64 
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Gödel's proof is correct, then it must be accepted that the human mind is capable of insights 
which exceed the capacity of any such machine.  

The reason for this, Penrose claims, is quite simple. Consider the way we go about proving, 
by using e.g. a Turing machine, whether a given mathematical proposition is a theorem. We 
instruct the machine to execute a specific algorithm, i.e. a computational procedure, or 
program, which hopefully will give us a definitive answer. In fact, we may never be able to 
obtain an answer, for the process of computation conceivably may never stop. The 
proposition in question, namely, may be such that its proof, or disproof, for that matter, 
requires an infinite number of steps, or infinite number of computational operations. So the 
question is, how do we establish in the given instance whether the machine will terminate its 
operations at some stage or whether it will go on computing forever? 

Suppose we wish to decide computationally if the proposition that no number is a sum 
of its factors is true, i.e. whether it is a theorem, and instruct the machine to perform an 
appropriate computation until it finds a counter-instance. After a few steps the machine will 
stop at number 6, which disproves the proposition, and the problem is resolved. But 
suppose we wish to test the proposition that any number can be represented as a sum of four 
square numbers, and instruct the machine to halt when it finds a counter-instance. In this 
case the machine will never come to a stop: we know this because there is a perfectly valid 
proof (by Lagrange) which shows that the proposition is indeed true. The machine, that is, 
will go on forever stolidly searching for counter-instances where we know from other 
sources that there could be none. The point briefly is that the machine does not know what 
it cannot do, i.e. it cannot identify the questions that cannot be computationally answered. 

Now superficially it might seem that this could be remedied by attaching to the machine 
a special computational device, a sort of meta-algorithm, which would be able to perform 
just such a task, i.e. decide if and when the process of computation will terminate. But what 
kind of algorithm exactly might be able to perform this task and provide the proof we need? 
There is one well-tried and highly successful method of proving mathematical theorems, 
namely via mathematical induction. Briefly, mathematical induction is a procedure whereby 
it can be shown that a given property F which attaches to a specific number attaches to all 
numbers. It works like this: one first assumes that F attaches to the first number of the 
series, and then proceeds to show that if F attaches to any given number n, it also necessarily 
attaches to its immediate successor n+1, and therefore to all numbers in the series. Here, of 
course, it should be born in mind that unlike the inductive method employed in natural 
sciences, which allows only of probable inferences, mathematical induction, by contrast, is 
conclusive, and produces proofs which cannot be overturned. 

Is this, then, the kind of decision mechanism that we are looking for? Might it be 
possible, that is, to use mathematical induction in order to resolve the ‘halting problem’, i.e. 
decide if in the given case the process of computation by a Turing machine will or will not 
come to a stop? Not so, claims Penrose, and this too follows from Gödel's proof. The point 
is that no computational rule or algorithmic procedure is involved in judging the truth of a 
sentence which says of itself that it is not provable within the system, whereas mathematical 
induction essentially reduces to a mechanical algorithm. In short, the kind of meta-
mathematical insight that enables us to decide whether in the given case the machine will, or 
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will not terminate its operations, ‘lies beyond anything that can be formalised as a set of 
rules’.6 

Penrose's conclusion, accordingly, is that mind in certain fundamental respects is not 
computational, and consequently cannot be mimicked by a Turing machine. If ascertaining 
truth or falsity of a mathematical proposition were simply a matter of performing a 
particular computation then the Turing machine would be able to do the job splendidly. 
But a decision about truth or falsity, he argues, cannot be simply a matter of computation. 
It demands an understanding, and hence the awareness of what the computation is about, 
and the machine has no understanding of what it is doing. It has no wherewithal, as it were, 
to enable it to grasp the meaning of its own operations, and this ‘says something very 
significant about the mental quality of understanding’.7  

 
 

8 
 
Yet one has to enter here some reservations. While it is certainly true that understanding 

requires consciousness it does not follow from this that understanding, therefore, is non-
computational. To say that a decision about truth of falsity of mathematical propositions 
cannot be simply a matter of computation is one thing, but to claim that such a decision 
does not necessarily require, or presuppose computation is something quite different. The 
first does not entail the second. What Gödel's proof shows is not that there are mathematical 
theorems which can be established non-computationally, only that the grasp of the general 
import of such theorems presupposes consciousness. Gödel's proof, in a sense, can itself be 
executed by a Turing machine – what such a machine cannot prove is the generality of its 
conclusion, viz. that in any and every system containing ordinary arithmetic, provided such a 
system is consistent, it will be possible to construct formally indecidable but nevertheless 
true mathematical sentences. In other words, not all mathematical truths can be established 
from a single (finite) set of axioms. Nevertheless this does not testify to a ‘non-computational’ 
nature of mathematical reasoning; it only shows that to the extent to which a Turing-type 
mechanism lacks a self-referential device such as is normally associated with consciousness it 
lacks the capacity to draw general inferences from it its own operations.  

This is the key point, and I will return to it presently. The fact is that Penrose's ‘anti-
computational’ argument is itself based on an algorithm. Consider the method he relies on 
to underpin his conclusions, i.e. reductio ad absurdum. This method involves an attempt to 
demonstrate a proposition by showing that its negation produces a contradiction. The 
assumption, that is, is that in order to prove a proposition it is sufficient to show that its 
negation cannot be consistently entertained. This is a familiar logical device widely employed in 
classical mathematics.  

Now although the reductio method of proof is a powerful tool in the mathematical 
armoury it is not viewed with favour by some mathematicians, mainly because the tendency 

__________________ 
6 Ib. p. 72 
7 Ib. p. 76 
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often is to use it to justify certain existential inferences about numbers, which cannot be 
corroborated in terms of what can actually be constructed, or is even constructible in 
principle. This is where mathematical constructivists part company with the platonistically 
inclined mathematicians (like Penrose) who take the view that mathematics is essentially 
about ‘discovering’ mathematical entities and theorems that are in a sense already there 
rather than bringing them into existence through the activity of ‘construction’, and who 
therefore have no hesitation in availing themselves of the reductio method of proof.  

But without going into the details of the dispute between constructivism and Platonism, 
the question that may legitimately be asked is this: assuming that the computational 
procedures executed by a Turing machine are not sufficient to produce the kind of proofs 
we need, does this necessarily mean that we have to abandon the principle of ‘algorithmic’ 
reasoning altogether? Why cannot the reductio ad absurdum itself be treated as a kind of 
algorithm; a typically conceptual algorithm (and hence involving conscious processes), but an 
algorithm nonetheless? The point is that in all arguments, there are certain definitions to be 
observed, certain assumptions to be made and tested, certain rules of inference to be 
followed. Whilst none of this, admittedly, may literally be explicable in terms of purely 
mechanical manipulations of symbols, it certainly does involve operations with symbols, and 
in so far as such operations are conducted in accordance with certain rules, there is no 
reason why they cannot be conducted by a machine.  

In the end, it seems, it will all depend on what we understand by ‘computation’ and 
‘machine’. There is an automatic assumption underlying all reductionist arguments, which 
is that computations such as might be performed by a mechanism similar to a Turing 
machine are merely mechanical operations that do not need to involve consciousness. The 
machine is said to operate a given algorithm, or algorithms, ‘blindly’, i.e. without an awareness 
of what it is doing. But while all problem solving activity involve certain algorithmic 
operations it does not follow that all such operations, including the kind of logical reasoning 
involved in mathematical proofs, must therefore be reducible to a purely mechanical 
computation. That all algorithmic operations are reducible to mechanical computations 
reflects a specific view of algorithms. Algorithms, that is, are defined literally as the kind of 
rules that can be blindly executed by a Turing machine. But, as I have been trying to show, 
algorithmic reasoning, in as much as it involves manipulations of concepts, has a broader 
meaning, and there is every reason for supposing that such reasoning must involve consciousness. 
As a matter of fact, we know that such an ‘algorithmic’ machine does exist, namely our 
brain. So the main issue is not whether machines can think, but whether such things as 
insight and consciousness are in all cases operationally redundant, and it is enough to pose 
this question, it seems, in order to know the answer. 
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To sum up: the ‘computational’ approach is essentially reductionist. The key initial 

premise is that mental concepts are not descriptive of some mysterious mental states but 
have to do with certain kinds of operations involving transmission and processing of information. 
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In short, rather than talking in terms of ‘consciousness’ or ‘mind’ we should talk about 
intelligent behaviour; and such behaviour, which in various degrees is shared by all living 
beings, can in principle be successfully simulated and operationally tested by an algorithmic 
mechanism, as illustrated by Turing’s ‘imitation game’. Consciousness has no clearly 
identifiable function to perform in this process. If a machine can pass a Turing test it makes 
no difference if we can call it ‘conscious’. 

By contrast the anti-computational position involves the claim that as long as mathematical 
reasoning aims at discovering mathematical truth it cannot be wholly computational. Such 
reasoning depends on understanding and insight, and understanding and insight are not 
explicable in computational terms. Since they typically involve conscious processes, it follows 
that consciousness cannot be interpreted simply as a by-product of computational activity 
either. Some philosophers take this to mean that consciousness is not only non-computational 
but cannot be explained in physical terms at all, while others (for example Penrose) take the 
view that although conscious phenomena cannot be simulated on a computer, no matter how 
powerful, they are nevertheless manifestations of certain physical (quantum) events in the 
brain, even though the resources of present day physics are inadequate to explain them. 

Both the computational and the non-computational position can be supported by powerful 
arguments, and that of course is the problem; for if both are right, neither is. The point is 
that the issue cannot be resolved in terms in which it is phrased. What we should be asking 
is not whether mathematical understanding can or cannot be explained in terms of computation, 
but under what conditions that which mathematics does makes sense? What in particular 
makes concepts such as the concept of proof, or the concept of a theorem, intelligible? 

In short, while it is in principle possible to perform any algorithmic operation ‘unthinkingly’, 
it is not possible to know ‘unthinkingly’ why such operations are valid or invalid, why 
certain moves are sound while others are logically disallowed. Such questions cannot be a 
matter for mathematics alone. There are many concepts that form an integral part of normal 
mathematical reasoning but which transcend the horizon of mathematics in the narrow 
sense of the word. The concept of truth is particularly troublesome – so much so, in fact, 
that some mathematicians have argued it is best left out of mathematics altogether; with 
‘true’ in all cases being replaced by ‘derivable from certain (stipulated) axioms and definitions’. 
But even if this were possible – and platonistically inclined mathematicians hotly dispute 
that it is – this would still leave the problem of explaining the grounds of validity of mathematical 
propositions as well as the problem of clarifying a host of other ideas, including the 
distinction between that which is and that which isn’t computable, the distinction between 
what is computable and what must logically follow, etc. – all of which require for their 
clarification a recourse to extra-mathematical as well as mathematical resources. If, on the 
other hand, the concept of truth cannot be entirely dispensed with, then it soon becomes 
clear that, in addition, we shall need a whole battery of other concepts with which the concept 
of truth is analytically linked, and that a decision in a given case as to the correct or incorrect 
application of such concepts cannot be a matter of mechanical manipulation of symbols alone. 

 


